Loading…

Mid-Mountain Clouds at Whistler During the Vancouver 2010 Winter Olympics and Paralympics

A comprehensive study of mid-mountain clouds and their impacts on the Vancouver 2010 Winter Olympics and Paralympics is presented. Mid-mountain clouds were frequently present on the Whistler alpine venue, as identified in an extensive archive of webcam images over a 45-day period from February 5 to...

Full description

Saved in:
Bibliographic Details
Published in:Pure and applied geophysics 2014, Vol.171 (1-2), p.157-183
Main Authors: Mo, Ruping, Joe, Paul, Isaac, George A., Gultepe, Ismail, Rasmussen, Roy, Milbrandt, Jason, McTaggart-Cowan, Ron, Mailhot, Jocelyn, Brugman, Melinda, Smith, Trevor, Scott, Bill
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comprehensive study of mid-mountain clouds and their impacts on the Vancouver 2010 Winter Olympics and Paralympics is presented. Mid-mountain clouds were frequently present on the Whistler alpine venue, as identified in an extensive archive of webcam images over a 45-day period from February 5 to March 21, 2010. These clouds posed serious forecast challenges and had significant impacts on some Olympic and Paralympic alpine skiing competitions. Under fair weather conditions, a diurnal upslope (anabatic) flow can work in concert with a diurnal temperature inversion aloft to produce a localized phenomenon known as “Harvey’s Cloud” at Whistler. Two detailed case studies in this paper suggest that mid-mountain clouds can also develop in the area as a result of a moist valley flow interacting with a downslope flow descending from the mountaintop. A southerly inflow through the Sea-to-Sky corridor can be channeled by the local topography into a westerly upslope flow toward Whistler Mountain, resulting in orographic clouds on the alpine venue. Under favorable circumstances, these clouds are trapped to the mid-mountain zone by the leeward subsidence of an elevated southerly flow. The presence of the downslope subsidence was manifested by a distinguished dry layer observed on the top of the mid-mountain clouds in both cases. It is the subsidence-induced adiabatic warming that imposes a strong buoyant suppression to trap the mid-mountain cloud. On the other hand, the subsidence-induced dry layer has the potential to trigger evaporative instability to periodically breakup the mid-mountain cloud.
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-012-0540-2