Loading…

Unsteady turbulent plume models

Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol....

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2012-04, Vol.697, p.455-480
Main Authors: Scase, M. M., Hewitt, R. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four existing integral models of unsteady turbulent plumes are revisited. We demonstrate that none of these published models is ideal for general descriptions of unsteady behaviour and put forward a modified model. We show that the most recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443), and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979, p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness arises from the downstream growth of short-scale waves, which have an unbounded downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion term. The effect of including this diffusive mechanism is to include a vertical structure in the model that can be interpreted as representing the vertical extent of an eddy. The effects of this additional mechanism are small for steady applications, and cases where the plume forcing can be considered to follow a power law (both of which have been studied extensively). However, the inclusion of diffusion is shown to be crucial to the general initial-value problem for unsteady models.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2012.77