Loading…

Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2012-03, Vol.52 (3), p.743-748
Main Authors: Hecht, Christian, van der Schoot, Nadine, Kronemayer, Helmut, Wlokas, Irenaeus, Lindken, Ralph, Schulz, Christof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3
cites cdi_FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3
container_end_page 748
container_issue 3
container_start_page 743
container_title Experiments in fluids
container_volume 52
creator Hecht, Christian
van der Schoot, Nadine
Kronemayer, Helmut
Wlokas, Irenaeus
Lindken, Ralph
Schulz, Christof
description Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.
doi_str_mv 10.1007/s00348-011-1112-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642296407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642296407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0EUi-lD9CdN0hsQsc_cZIlqqAgVeoG2FoTZ3xx5cTBTkCFl2_CrVjCajTj7xzp-DB2KeCtAGiuCoDSbQVCVEIIWeln7CC0kvumn7MDNFJVujX6jL0s5R5A1B20B_b7aygrxvALl5AmnjxfvhE_YuE-pp88TNyvFLmjGHkf5hQx8zniQoWvJUxHPqZIbt3PfwSFaNjPOA18DC6nasa8BBeJhxGPxH9QTC6MtOSHV-yFx1jo4mmesy8f3n--_ljd3t18un53Wzkt66VqlSeHXlPTGQFN3fVC9zX1WINypvcweCV7HMC02PZ6QCck-Nr0nTB1Y0idszcn3zmn7yuVxY6h7IlworQWK4yWsjMamv-jtZBKSdnoDRUndAtZSiZv57xFzA9WgN07sadO7NaJ3Tuxu-b1kz0Wh9FnnFwof4WyNrD5w8bJE1e2p-lI2d6nNU_bJ_3D_BGoeJ1j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512332274</pqid></control><display><type>article</type><title>Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry</title><source>Springer Link</source><creator>Hecht, Christian ; van der Schoot, Nadine ; Kronemayer, Helmut ; Wlokas, Irenaeus ; Lindken, Ralph ; Schulz, Christof</creator><creatorcontrib>Hecht, Christian ; van der Schoot, Nadine ; Kronemayer, Helmut ; Wlokas, Irenaeus ; Lindken, Ralph ; Schulz, Christof</creatorcontrib><description>Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-011-1112-4</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Applied sciences ; Channels ; Energy ; Energy. Thermal use of fuels ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Fluids ; Fuel cells ; Fundamental areas of phenomenology (including applications) ; Gas flow ; Heat and Mass Transfer ; Instrumentation for fluid dynamics ; Liquids ; Nucleation ; Physics ; Research Article</subject><ispartof>Experiments in fluids, 2012-03, Vol.52 (3), p.743-748</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3</citedby><cites>FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25601230$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hecht, Christian</creatorcontrib><creatorcontrib>van der Schoot, Nadine</creatorcontrib><creatorcontrib>Kronemayer, Helmut</creatorcontrib><creatorcontrib>Wlokas, Irenaeus</creatorcontrib><creatorcontrib>Lindken, Ralph</creatorcontrib><creatorcontrib>Schulz, Christof</creatorcontrib><title>Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Fluids</subject><subject>Fuel cells</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gas flow</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation for fluid dynamics</subject><subject>Liquids</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Research Article</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhS0EUi-lD9CdN0hsQsc_cZIlqqAgVeoG2FoTZ3xx5cTBTkCFl2_CrVjCajTj7xzp-DB2KeCtAGiuCoDSbQVCVEIIWeln7CC0kvumn7MDNFJVujX6jL0s5R5A1B20B_b7aygrxvALl5AmnjxfvhE_YuE-pp88TNyvFLmjGHkf5hQx8zniQoWvJUxHPqZIbt3PfwSFaNjPOA18DC6nasa8BBeJhxGPxH9QTC6MtOSHV-yFx1jo4mmesy8f3n--_ljd3t18un53Wzkt66VqlSeHXlPTGQFN3fVC9zX1WINypvcweCV7HMC02PZ6QCck-Nr0nTB1Y0idszcn3zmn7yuVxY6h7IlworQWK4yWsjMamv-jtZBKSdnoDRUndAtZSiZv57xFzA9WgN07sadO7NaJ3Tuxu-b1kz0Wh9FnnFwof4WyNrD5w8bJE1e2p-lI2d6nNU_bJ_3D_BGoeJ1j</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Hecht, Christian</creator><creator>van der Schoot, Nadine</creator><creator>Kronemayer, Helmut</creator><creator>Wlokas, Irenaeus</creator><creator>Lindken, Ralph</creator><creator>Schulz, Christof</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry</title><author>Hecht, Christian ; van der Schoot, Nadine ; Kronemayer, Helmut ; Wlokas, Irenaeus ; Lindken, Ralph ; Schulz, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Fluids</topic><topic>Fuel cells</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gas flow</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation for fluid dynamics</topic><topic>Liquids</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hecht, Christian</creatorcontrib><creatorcontrib>van der Schoot, Nadine</creatorcontrib><creatorcontrib>Kronemayer, Helmut</creatorcontrib><creatorcontrib>Wlokas, Irenaeus</creatorcontrib><creatorcontrib>Lindken, Ralph</creatorcontrib><creatorcontrib>Schulz, Christof</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hecht, Christian</au><au>van der Schoot, Nadine</au><au>Kronemayer, Helmut</au><au>Wlokas, Irenaeus</au><au>Lindken, Ralph</au><au>Schulz, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>52</volume><issue>3</issue><spage>743</spage><epage>748</epage><pages>743-748</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-011-1112-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2012-03, Vol.52 (3), p.743-748
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_miscellaneous_1642296407
source Springer Link
subjects Applied sciences
Channels
Energy
Energy. Thermal use of fuels
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Fluids
Fuel cells
Fundamental areas of phenomenology (including applications)
Gas flow
Heat and Mass Transfer
Instrumentation for fluid dynamics
Liquids
Nucleation
Physics
Research Article
title Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20the%20gas%20flow%20in%20fuel%20cell%20bipolar%20plates%20using%20molecular%20flow%20seeding%20and%20micro-particle%20image%20velocimetry&rft.jtitle=Experiments%20in%20fluids&rft.au=Hecht,%20Christian&rft.date=2012-03-01&rft.volume=52&rft.issue=3&rft.spage=743&rft.epage=748&rft.pages=743-748&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-011-1112-4&rft_dat=%3Cproquest_cross%3E1642296407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-83fecaf4e79610759b14b5eba503c6bf0df32bad068a8b4dac120f56b916576e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512332274&rft_id=info:pmid/&rfr_iscdi=true