Loading…

The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco‐elasto‐plastic numerical mode...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2013-04, Vol.118 (4), p.1502-1525
Main Authors: van Dinther, Y., Gerya, T. V., Dalguer, L. A., Corbi, F., Funiciello, F., Mai, P. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43
cites cdi_FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43
container_end_page 1525
container_issue 4
container_start_page 1502
container_title Journal of geophysical research. Solid earth
container_volume 118
creator van Dinther, Y.
Gerya, T. V.
Dalguer, L. A.
Corbi, F.
Funiciello, F.
Mai, P. M.
description The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco‐elasto‐plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco‐elastic gelatin wedge underthrusted by a rigid plate with defined velocity‐weakening and ‐strengthening regions. Our geodynamic simulation approach includes velocity‐weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity‐strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack‐, or occasionally even pulse‐like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back‐propagation and repeated slip, and the agreement with laboratory results demonstrate that visco‐elasto‐plastic geodynamic models with rate‐dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones. Key points Geodynamic simulations with rate‐dependent friction capture seismic thrust cycleSpontaneous, stress‐driven, mainly crack‐like rupture may re‐rupture hypocenterGPS displacements capture inter‐, co‐, and postseismic features via afterslip
doi_str_mv 10.1029/2012JB009479
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642296673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642296673</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEElXbGx_AEhcOpHX8LzY3uqULVQWoKio3y7EnrIuz3toOJeLLk2VXFeLAXGY07_dGT5qqetHgkwYTdUpwQy7PMFasVU-qA9IIVSvKxdPHuaHPq-Oc7_Bccl417KD6dbMClMHnwVtkJxsAmYLy2LnRFh_XqKzSmEt-g8gJOp_WZsv5YRO8NVs9o9ijbxDdXsp-GMNe-WGCd6aAQw--rFAwXUymxDShIToI-ah61puQ4XjfD6svF-9uFu_rq0_LD4u3V7VhksiaE3DOEiGVsp0yPXG8h77lHZZAjeFGEOU4s6xTFCTrRNtDx1vnOiq5tIweVq92dzcp3o-Qix58thCCWUMcs24EI0QJ0dIZffkPehfHtJ7T_aEEE0LhmXq9o2yKOSfo9Sb5waRJN1hvn6H_fsaM0x3-4ANM_2X15fL6jGPM5Oyqdy6fC_x8dJn0Xc9JW65vPy71Ob5Y3H6ln_U1_Q06yJv1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642646690</pqid></control><display><type>article</type><title>The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>van Dinther, Y. ; Gerya, T. V. ; Dalguer, L. A. ; Corbi, F. ; Funiciello, F. ; Mai, P. M.</creator><creatorcontrib>van Dinther, Y. ; Gerya, T. V. ; Dalguer, L. A. ; Corbi, F. ; Funiciello, F. ; Mai, P. M.</creatorcontrib><description>The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco‐elasto‐plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco‐elastic gelatin wedge underthrusted by a rigid plate with defined velocity‐weakening and ‐strengthening regions. Our geodynamic simulation approach includes velocity‐weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity‐strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack‐, or occasionally even pulse‐like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back‐propagation and repeated slip, and the agreement with laboratory results demonstrate that visco‐elasto‐plastic geodynamic models with rate‐dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones. Key points Geodynamic simulations with rate‐dependent friction capture seismic thrust cycleSpontaneous, stress‐driven, mainly crack‐like rupture may re‐rupture hypocenterGPS displacements capture inter‐, co‐, and postseismic features via afterslip</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2012JB009479</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>benchmark ; Coalescence ; Computer simulation ; Earthquakes ; Friction ; geodetic displacements ; Geodynamics ; Geophysics ; Laboratories ; Mathematical models ; numerical models ; rate-dependent friction ; Rupture ; Seismic activity ; seismic cycle ; Seismic phenomena ; Spontaneous ; Stresses ; subduction interplate earthquakes</subject><ispartof>Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1502-1525</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43</citedby><cites>FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Gerya, T. V.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><title>The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models</title><title>Journal of geophysical research. Solid earth</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco‐elasto‐plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco‐elastic gelatin wedge underthrusted by a rigid plate with defined velocity‐weakening and ‐strengthening regions. Our geodynamic simulation approach includes velocity‐weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity‐strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack‐, or occasionally even pulse‐like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back‐propagation and repeated slip, and the agreement with laboratory results demonstrate that visco‐elasto‐plastic geodynamic models with rate‐dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones. Key points Geodynamic simulations with rate‐dependent friction capture seismic thrust cycleSpontaneous, stress‐driven, mainly crack‐like rupture may re‐rupture hypocenterGPS displacements capture inter‐, co‐, and postseismic features via afterslip</description><subject>benchmark</subject><subject>Coalescence</subject><subject>Computer simulation</subject><subject>Earthquakes</subject><subject>Friction</subject><subject>geodetic displacements</subject><subject>Geodynamics</subject><subject>Geophysics</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>numerical models</subject><subject>rate-dependent friction</subject><subject>Rupture</subject><subject>Seismic activity</subject><subject>seismic cycle</subject><subject>Seismic phenomena</subject><subject>Spontaneous</subject><subject>Stresses</subject><subject>subduction interplate earthquakes</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEElXbGx_AEhcOpHX8LzY3uqULVQWoKio3y7EnrIuz3toOJeLLk2VXFeLAXGY07_dGT5qqetHgkwYTdUpwQy7PMFasVU-qA9IIVSvKxdPHuaHPq-Oc7_Bccl417KD6dbMClMHnwVtkJxsAmYLy2LnRFh_XqKzSmEt-g8gJOp_WZsv5YRO8NVs9o9ijbxDdXsp-GMNe-WGCd6aAQw--rFAwXUymxDShIToI-ah61puQ4XjfD6svF-9uFu_rq0_LD4u3V7VhksiaE3DOEiGVsp0yPXG8h77lHZZAjeFGEOU4s6xTFCTrRNtDx1vnOiq5tIweVq92dzcp3o-Qix58thCCWUMcs24EI0QJ0dIZffkPehfHtJ7T_aEEE0LhmXq9o2yKOSfo9Sb5waRJN1hvn6H_fsaM0x3-4ANM_2X15fL6jGPM5Oyqdy6fC_x8dJn0Xc9JW65vPy71Ob5Y3H6ln_U1_Q06yJv1</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>van Dinther, Y.</creator><creator>Gerya, T. V.</creator><creator>Dalguer, L. A.</creator><creator>Corbi, F.</creator><creator>Funiciello, F.</creator><creator>Mai, P. M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>7TB</scope></search><sort><creationdate>201304</creationdate><title>The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models</title><author>van Dinther, Y. ; Gerya, T. V. ; Dalguer, L. A. ; Corbi, F. ; Funiciello, F. ; Mai, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>benchmark</topic><topic>Coalescence</topic><topic>Computer simulation</topic><topic>Earthquakes</topic><topic>Friction</topic><topic>geodetic displacements</topic><topic>Geodynamics</topic><topic>Geophysics</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>numerical models</topic><topic>rate-dependent friction</topic><topic>Rupture</topic><topic>Seismic activity</topic><topic>seismic cycle</topic><topic>Seismic phenomena</topic><topic>Spontaneous</topic><topic>Stresses</topic><topic>subduction interplate earthquakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Dinther, Y.</creatorcontrib><creatorcontrib>Gerya, T. V.</creatorcontrib><creatorcontrib>Dalguer, L. A.</creatorcontrib><creatorcontrib>Corbi, F.</creatorcontrib><creatorcontrib>Funiciello, F.</creatorcontrib><creatorcontrib>Mai, P. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Dinther, Y.</au><au>Gerya, T. V.</au><au>Dalguer, L. A.</au><au>Corbi, F.</au><au>Funiciello, F.</au><au>Mai, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2013-04</date><risdate>2013</risdate><volume>118</volume><issue>4</issue><spage>1502</spage><epage>1525</epage><pages>1502-1525</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco‐elasto‐plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco‐elastic gelatin wedge underthrusted by a rigid plate with defined velocity‐weakening and ‐strengthening regions. Our geodynamic simulation approach includes velocity‐weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity‐strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack‐, or occasionally even pulse‐like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back‐propagation and repeated slip, and the agreement with laboratory results demonstrate that visco‐elasto‐plastic geodynamic models with rate‐dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones. Key points Geodynamic simulations with rate‐dependent friction capture seismic thrust cycleSpontaneous, stress‐driven, mainly crack‐like rupture may re‐rupture hypocenterGPS displacements capture inter‐, co‐, and postseismic features via afterslip</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012JB009479</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2013-04, Vol.118 (4), p.1502-1525
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_miscellaneous_1642296673
source Wiley; Alma/SFX Local Collection
subjects benchmark
Coalescence
Computer simulation
Earthquakes
Friction
geodetic displacements
Geodynamics
Geophysics
Laboratories
Mathematical models
numerical models
rate-dependent friction
Rupture
Seismic activity
seismic cycle
Seismic phenomena
Spontaneous
Stresses
subduction interplate earthquakes
title The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20seismic%20cycle%20at%20subduction%20thrusts:%202.%20Dynamic%20implications%20of%20geodynamic%20simulations%20validated%20with%20laboratory%20models&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=van%20Dinther,%20Y.&rft.date=2013-04&rft.volume=118&rft.issue=4&rft.spage=1502&rft.epage=1525&rft.pages=1502-1525&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2012JB009479&rft_dat=%3Cproquest_cross%3E1642296673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4828-52eddc26899cb9af2d5fef75b08e3aa5a629d54c4b93e84b67feb57ddb3858c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1642646690&rft_id=info:pmid/&rfr_iscdi=true