Loading…
Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing
•Innovative water reclamation, energy savings and additional coproducts.•Removes recycling inhibitors, i.e. lactic/acetic acid, glycerol, suspended solids.•Fungal biomass has high protein, valuable amino acids suitable for non-ruminants.•Fungal biomass could also potentially be raw material for chit...
Saved in:
Published in: | Bioresource technology 2014-01, Vol.151, p.284-290 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3 |
container_end_page | 290 |
container_issue | |
container_start_page | 284 |
container_title | Bioresource technology |
container_volume | 151 |
creator | Rasmussen, M.L. Khanal, S.K. Pometto, A.L. van Leeuwen, J. (Hans) |
description | •Innovative water reclamation, energy savings and additional coproducts.•Removes recycling inhibitors, i.e. lactic/acetic acid, glycerol, suspended solids.•Fungal biomass has high protein, valuable amino acids suitable for non-ruminants.•Fungal biomass could also potentially be raw material for chitin and chitosan.•Fungal cultivation on thin stillage could make ethanol production more sustainable.
Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein – a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. |
doi_str_mv | 10.1016/j.biortech.2013.10.080 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642299874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852413016672</els_id><sourcerecordid>1464908576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7jj6F5a-CF56zFenk5uy-AULXhRPEqqT6tkM3cmadC_svzfjzOpxJYEkxVNVb-ol5JLRHaNMvT3shpDygu5mxykTNbijmj4hG6Z70XLTq6dkQ42ire64vCAvSjlQSgXr-XNywSVXRvNuQ37-gAVzk9FNMMMSUmwg-uYOphVb8B59fYcZpmbEeh9zmhuXcmxxuYGYpqYsYZpgj81w34xr3FfyNieHpYS4f0mejTAVfHU-t-T7xw_frj63118_fbl6f926TtClZUZyZwAH1wsneoMgFIKsu4PRdAPztIdB9a5zUtevCVTcI9NejQNTEsSWvDnVra1_rVgWO4fisAqLmNZiK8S5MbqXj6Mdp0KpTvwHKpU0VHdV0JaoE-pyKiXjaG9znVq-t4zao2H2YB8Ms0fDjvFqWE28PPdYhxn937QHhyrw-gxAcTCNGaIL5R-n6-J_FLw7cVjnfBcw2-ICRoc-VHMX61N4TMtvRre3ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464908576</pqid></control><display><type>article</type><title>Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing</title><source>Elsevier</source><creator>Rasmussen, M.L. ; Khanal, S.K. ; Pometto, A.L. ; van Leeuwen, J. (Hans)</creator><creatorcontrib>Rasmussen, M.L. ; Khanal, S.K. ; Pometto, A.L. ; van Leeuwen, J. (Hans)</creatorcontrib><description>•Innovative water reclamation, energy savings and additional coproducts.•Removes recycling inhibitors, i.e. lactic/acetic acid, glycerol, suspended solids.•Fungal biomass has high protein, valuable amino acids suitable for non-ruminants.•Fungal biomass could also potentially be raw material for chitin and chitosan.•Fungal cultivation on thin stillage could make ethanol production more sustainable.
Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein – a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2013.10.080</identifier><identifier>PMID: 24269825</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetic Acid - metabolism ; Amino Acids - metabolism ; Animal Feed ; Biological and medical sciences ; Biological Oxygen Demand Analysis ; Biomass ; Corn ; Ethanol ; Ethanol - chemistry ; Ethyl alcohol ; Evaporation ; Fundamental and applied biological sciences. Psychology ; Fungal process ; Fungal Proteins - metabolism ; Fungi ; Glycerol - isolation & purification ; Inoculation ; Lactic Acid - metabolism ; Oils ; Organic Chemicals - isolation & purification ; Oxygen - analysis ; Plants (organisms) ; Rhizopus - growth & development ; Rhizopus - metabolism ; Rhizopus oligosporus ; Solubility ; Stillage ; Thin stillage ; Water - chemistry ; Water reuse ; Zea mays - chemistry</subject><ispartof>Bioresource technology, 2014-01, Vol.151, p.284-290</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3</citedby><cites>FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3</cites><orcidid>0000-0002-0538-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28282276$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24269825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, M.L.</creatorcontrib><creatorcontrib>Khanal, S.K.</creatorcontrib><creatorcontrib>Pometto, A.L.</creatorcontrib><creatorcontrib>van Leeuwen, J. (Hans)</creatorcontrib><title>Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Innovative water reclamation, energy savings and additional coproducts.•Removes recycling inhibitors, i.e. lactic/acetic acid, glycerol, suspended solids.•Fungal biomass has high protein, valuable amino acids suitable for non-ruminants.•Fungal biomass could also potentially be raw material for chitin and chitosan.•Fungal cultivation on thin stillage could make ethanol production more sustainable.
Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein – a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants.</description><subject>Acetic Acid - metabolism</subject><subject>Amino Acids - metabolism</subject><subject>Animal Feed</subject><subject>Biological and medical sciences</subject><subject>Biological Oxygen Demand Analysis</subject><subject>Biomass</subject><subject>Corn</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethyl alcohol</subject><subject>Evaporation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal process</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Glycerol - isolation & purification</subject><subject>Inoculation</subject><subject>Lactic Acid - metabolism</subject><subject>Oils</subject><subject>Organic Chemicals - isolation & purification</subject><subject>Oxygen - analysis</subject><subject>Plants (organisms)</subject><subject>Rhizopus - growth & development</subject><subject>Rhizopus - metabolism</subject><subject>Rhizopus oligosporus</subject><subject>Solubility</subject><subject>Stillage</subject><subject>Thin stillage</subject><subject>Water - chemistry</subject><subject>Water reuse</subject><subject>Zea mays - chemistry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU2LFDEQhoMo7jj6F5a-CF56zFenk5uy-AULXhRPEqqT6tkM3cmadC_svzfjzOpxJYEkxVNVb-ol5JLRHaNMvT3shpDygu5mxykTNbijmj4hG6Z70XLTq6dkQ42ire64vCAvSjlQSgXr-XNywSVXRvNuQ37-gAVzk9FNMMMSUmwg-uYOphVb8B59fYcZpmbEeh9zmhuXcmxxuYGYpqYsYZpgj81w34xr3FfyNieHpYS4f0mejTAVfHU-t-T7xw_frj63118_fbl6f926TtClZUZyZwAH1wsneoMgFIKsu4PRdAPztIdB9a5zUtevCVTcI9NejQNTEsSWvDnVra1_rVgWO4fisAqLmNZiK8S5MbqXj6Mdp0KpTvwHKpU0VHdV0JaoE-pyKiXjaG9znVq-t4zao2H2YB8Ms0fDjvFqWE28PPdYhxn937QHhyrw-gxAcTCNGaIL5R-n6-J_FLw7cVjnfBcw2-ICRoc-VHMX61N4TMtvRre3ZA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Rasmussen, M.L.</creator><creator>Khanal, S.K.</creator><creator>Pometto, A.L.</creator><creator>van Leeuwen, J. (Hans)</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0538-1880</orcidid></search><sort><creationdate>201401</creationdate><title>Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing</title><author>Rasmussen, M.L. ; Khanal, S.K. ; Pometto, A.L. ; van Leeuwen, J. (Hans)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acetic Acid - metabolism</topic><topic>Amino Acids - metabolism</topic><topic>Animal Feed</topic><topic>Biological and medical sciences</topic><topic>Biological Oxygen Demand Analysis</topic><topic>Biomass</topic><topic>Corn</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethyl alcohol</topic><topic>Evaporation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal process</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Glycerol - isolation & purification</topic><topic>Inoculation</topic><topic>Lactic Acid - metabolism</topic><topic>Oils</topic><topic>Organic Chemicals - isolation & purification</topic><topic>Oxygen - analysis</topic><topic>Plants (organisms)</topic><topic>Rhizopus - growth & development</topic><topic>Rhizopus - metabolism</topic><topic>Rhizopus oligosporus</topic><topic>Solubility</topic><topic>Stillage</topic><topic>Thin stillage</topic><topic>Water - chemistry</topic><topic>Water reuse</topic><topic>Zea mays - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, M.L.</creatorcontrib><creatorcontrib>Khanal, S.K.</creatorcontrib><creatorcontrib>Pometto, A.L.</creatorcontrib><creatorcontrib>van Leeuwen, J. (Hans)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, M.L.</au><au>Khanal, S.K.</au><au>Pometto, A.L.</au><au>van Leeuwen, J. (Hans)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>151</volume><spage>284</spage><epage>290</epage><pages>284-290</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Innovative water reclamation, energy savings and additional coproducts.•Removes recycling inhibitors, i.e. lactic/acetic acid, glycerol, suspended solids.•Fungal biomass has high protein, valuable amino acids suitable for non-ruminants.•Fungal biomass could also potentially be raw material for chitin and chitosan.•Fungal cultivation on thin stillage could make ethanol production more sustainable.
Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein – a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24269825</pmid><doi>10.1016/j.biortech.2013.10.080</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0538-1880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2014-01, Vol.151, p.284-290 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642299874 |
source | Elsevier |
subjects | Acetic Acid - metabolism Amino Acids - metabolism Animal Feed Biological and medical sciences Biological Oxygen Demand Analysis Biomass Corn Ethanol Ethanol - chemistry Ethyl alcohol Evaporation Fundamental and applied biological sciences. Psychology Fungal process Fungal Proteins - metabolism Fungi Glycerol - isolation & purification Inoculation Lactic Acid - metabolism Oils Organic Chemicals - isolation & purification Oxygen - analysis Plants (organisms) Rhizopus - growth & development Rhizopus - metabolism Rhizopus oligosporus Solubility Stillage Thin stillage Water - chemistry Water reuse Zea mays - chemistry |
title | Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20reclamation%20and%20value-added%20animal%20feed%20from%20corn-ethanol%20stillage%20by%20fungal%20processing&rft.jtitle=Bioresource%20technology&rft.au=Rasmussen,%20M.L.&rft.date=2014-01&rft.volume=151&rft.spage=284&rft.epage=290&rft.pages=284-290&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2013.10.080&rft_dat=%3Cproquest_cross%3E1464908576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-1942c9aebc73c379ea36ea4ea45af95b1d07ab67c5c489763e62de18d6fb164a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464908576&rft_id=info:pmid/24269825&rfr_iscdi=true |