Loading…

Optimal Hydropower Generation Under Climate Change Conditions for a Northern Water Resources System

This paper examines climate change impacts on the water resources system of the Manicouagan River (Québec, Canada). The objective is to evaluate the performance of existing infrastructures under future climate projections and the associated uncertainties. The main purpose of the water resources syst...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management 2014-10, Vol.28 (13), p.4631-4644
Main Authors: Haguma, Didier, Leconte, Robert, Côté, Pascal, Krau, Stéphane, Brissette, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines climate change impacts on the water resources system of the Manicouagan River (Québec, Canada). The objective is to evaluate the performance of existing infrastructures under future climate projections and the associated uncertainties. The main purpose of the water resources system is hydropower production. A reservoir optimization algorithm, Sampling Stochastic Dynamic Programming (SSDP), was used to derive weekly operating decisions for the existing system subject to reservoir inflows reflecting future climate, for optimum hydropower production. These projections are simulations from the SWAT hydrologic model for climate change scenarios for the period from 2010 to 2099. Results show that the climate change will alter the hydrological regime of the study area: earlier timing of the spring flood, reduced spring peak flow, and increased annual inflows volume in the future compared to the historical climate. The SSDP optimization algorithm adapted the operating policy to the future hydrological regime by adjusting water reservoir levels in the winter and spring, and increasing the release through turbines, which in the end increased power generation. However, there could be more unproductive spills for some power plants, which would decrease the overall efficiency of the existing water resources system.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-014-0763-3