Loading…
A new visual library for modeling and simulation of renewable energy desalination systems (REDS)
The recourse to renewable energy systems in general has become a reality. Thus, it has become very important for engineers to design and simulate such systems that serve the renewable desalination plants. A computer software package has been developed by the authors for design and simulation of rene...
Saved in:
Published in: | Desalination and water treatment 2013-11, Vol.51 (37-39), p.6905-6920 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recourse to renewable energy systems in general has become a reality. Thus, it has become very important for engineers to design and simulate such systems that serve the renewable desalination plants. A computer software package has been developed by the authors for design and simulation of renewable energy desalination systems (REDS). This was motivated by unavailability of such packages in the literature or on a commercial scale. Solar desalination systems, wind desalination systems, and geothermal desalination systems software libraries became affirmative parts of the main REDS software library. This library enables the user to construct different configurations by clicking the mouse over the required units (blocks). The interface aids designers, scientists, and operators to perform different analyses and calculations such as energy, exergy, cost, and thermoeconomics. Typical desalination processes such as a multi-stage flash, multi-effect distillation, and reverse osmosis are numerically modeled and embedded within the main library of the developed software. REDS shows a wide scope of validity, reliability, and capability to model and simulate renewable desalination systems. |
---|---|
ISSN: | 1944-3986 1944-3994 1944-3986 |
DOI: | 10.1080/19443994.2013.777369 |