Loading…

Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices

Reduced graphene oxide-based films were prepared to assess their effects as gas barriers on the stability of organic photovoltaic (OPV) devices. The direct spin-casting of a graphene oxide suspension onto an aluminum electrode was performed to encapsulate the associated OPV device with a reduced gra...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2014-10, Vol.7 (10), p.3403-3411
Main Authors: Kim, T, Kang, J H, Yang, S J, Sung, S J, Kim, Y S, Park, C R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reduced graphene oxide-based films were prepared to assess their effects as gas barriers on the stability of organic photovoltaic (OPV) devices. The direct spin-casting of a graphene oxide suspension onto an aluminum electrode was performed to encapsulate the associated OPV device with a reduced graphene oxide film. The lifetime of the OPV device after the reduction process was found to be increased by a factor of 50. The gas barrier properties of a graphene oxide layer are closely related to its surface roughness and dispersibility. Furthermore, these gas barrier properties can be enhanced by controlling the thermal reduction conditions. The thermal reduction of a graphene oxide film at a low heating rate results in a low water vapor permeability, only 0.1% of that of an as-prepared polyethylene naphthalate film. These results indicate that the dispersibility, surface roughness, and reduction conditions of a graphene oxide film significantly influence its gas barrier performance. Further investigations of the reduction of graphene oxide films are expected to enable further improvements in performance.
ISSN:1754-5692
1754-5706
DOI:10.1039/c4ee02310b