Loading…
Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices
Reduced graphene oxide-based films were prepared to assess their effects as gas barriers on the stability of organic photovoltaic (OPV) devices. The direct spin-casting of a graphene oxide suspension onto an aluminum electrode was performed to encapsulate the associated OPV device with a reduced gra...
Saved in:
Published in: | Energy & environmental science 2014-10, Vol.7 (10), p.3403-3411 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reduced graphene oxide-based films were prepared to assess their effects as gas barriers on the stability of organic photovoltaic (OPV) devices. The direct spin-casting of a graphene oxide suspension onto an aluminum electrode was performed to encapsulate the associated OPV device with a reduced graphene oxide film. The lifetime of the OPV device after the reduction process was found to be increased by a factor of 50. The gas barrier properties of a graphene oxide layer are closely related to its surface roughness and dispersibility. Furthermore, these gas barrier properties can be enhanced by controlling the thermal reduction conditions. The thermal reduction of a graphene oxide film at a low heating rate results in a low water vapor permeability, only 0.1% of that of an as-prepared polyethylene naphthalate film. These results indicate that the dispersibility, surface roughness, and reduction conditions of a graphene oxide film significantly influence its gas barrier performance. Further investigations of the reduction of graphene oxide films are expected to enable further improvements in performance. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/c4ee02310b |