Loading…
An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system
This paper presents a type of vibration energy harvester combining a piezoelectric cantilever and a single degree of freedom (SDOF) elastic system. The main function of the additional SDOF elastic system is to magnify vibration displacement of the piezoelectric cantilever to improve the power output...
Saved in:
Published in: | Journal of Zhejiang University. A. Science 2012-07, Vol.13 (7), p.526-537 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a type of vibration energy harvester combining a piezoelectric cantilever and a single degree of freedom (SDOF) elastic system. The main function of the additional SDOF elastic system is to magnify vibration displacement of the piezoelectric cantilever to improve the power output. A mathematical model of the energy harvester is developed based on Hamilton's principle and Rayleigh-Ritz method. Furthermore, the effects of the structural parameters of the SDOF elastic system on the electromechanical outputs of the energy harvester are analyzed numerically. The accuracy of the output performance in the numerical solution is identified from the finite element method (FEM). A good agreement is found between the numerical results and FEM results. The results show that the power output can be increased and the frequency bandwidth can be improved when the SDOF elastic system has a larger lumped mass and a smaller damping ratio. The numerical results also indicate that a matching load resistance under the short circuit resonance condition can obtain a higher current output, and so is more suitable for applica- tion to the piezoelectric energy harvester. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A1100344 |