Loading…

Assessment of CODAR SeaSonde and WERA HF Radars in Mapping Surface Currents on the West Florida Shelf

Concurrently operated on the West Florida shelf for the purpose of observing surface currents are three long-range (4.9 MHz) Coastal Ocean Dynamics Applications Radar (CODAR) SeaSonde and two median-range (12.7 MHz) Wellen Radar (WERA) high-frequency (HF) radar systems. These HF radars overlook an a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2014-06, Vol.31 (6), p.1363-1382
Main Authors: Liu, Yonggang, Weisberg, Robert H, Merz, Clifford R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Concurrently operated on the West Florida shelf for the purpose of observing surface currents are three long-range (4.9 MHz) Coastal Ocean Dynamics Applications Radar (CODAR) SeaSonde and two median-range (12.7 MHz) Wellen Radar (WERA) high-frequency (HF) radar systems. These HF radars overlook an array of moored acoustic Doppler current profilers (ADCPs), three of which are presently within the radar footprint. Analyzed herein are 3 months of simultaneous observations. Both the SeaSonde and WERA systems generally agree with the ADCPs to within root-mean-square differences (rmsd) for hourly radial velocity components of 5.19.2 and 3.86.5 cm s1 for SeaSonde and WERA, respectively, and within rmsd for 36-h low-pass filtered radial velocity components of 2.86.0 and 2.24.3 cm s1 for SeaSonde and WERA, respectively. The bearing offset and tidal and subtidal currents of total velocities are also assessed using the ADCP data. Despite differences in a variety of aspects between the direction-finding CODAR SeaSonde (long range, effective depth of 2.4 m, integration time of 4 h, and idealized antenna patterns) and the beam-forming WERA (median range, effective depth of 0.9 m, and integration time of 1 h), both HF radar systems demonstrated good surface current mapping capability. The differences between the velocities measured with the HF radar and the ADCP are sufficiently small in this low-energy shelf that much of these rmsd values may be accounted for by the expected measurement differences due to the horizontal, vertical, and temporal sampling differences of the ocean current observing systems used.
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-13-00107.1