Loading…

Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution

A facile method of developing carbon-copper (C-Cu) nanocomposites by coating nanocrystalline Cu on heat-treated polyaromatic hydrocarbons (HTPAHs) has been reported. These synthesized nanocomposites have been extensively characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FT...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-10, Vol.2 (39), p.16632-16639
Main Authors: Kumar, Anil, Singh, AP, Kumari, Saroj, Dutta, P K, Dhawan, S K, Dhar, Ajay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile method of developing carbon-copper (C-Cu) nanocomposites by coating nanocrystalline Cu on heat-treated polyaromatic hydrocarbons (HTPAHs) has been reported. These synthesized nanocomposites have been extensively characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), a scanning electron microscope (SEM), and transmission electron microscopy (TEM). The synthesized HTPAHs-based C-Cu nanocomposites exhibit improved mechanical and electrical properties, which could be tailored by varying the Cu nanoparticle loading. The highest electromagnetic interference shielding effectiveness (EMI SE) due to absorption and reflection at 12.4 GHz is 46.1 dB and 12.5 dB, respectively, for a 2 mm thick sample resulting in a total shielding effectiveness of 58.7 dB. This observed shielding effectiveness in these C-Cu nanocomposites is far above the threshold shielding effectiveness required for techno-commercial applications, especially in the Ku band of RF.
ISSN:2050-7488
2050-7496
DOI:10.1039/c4ta01655f