Loading…

Hydrographic data modeling methods for determining precise seafloor topography

Acoustic and light detection and ranging are the recent methods used in hydrographical surveying. Depth values depending on X and Y horizontal coordinates are measured in both methods. While processing the hydrographical data, all data with different density are interpolated and modeled for determin...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences 2013-08, Vol.17 (4), p.661-669
Main Authors: Aykut, Nedim Onur, Akpınar, Burak, Aydın, Ömer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acoustic and light detection and ranging are the recent methods used in hydrographical surveying. Depth values depending on X and Y horizontal coordinates are measured in both methods. While processing the hydrographical data, all data with different density are interpolated and modeled for determining the seafloor model using different interpolation techniques. In this study, effects of different surface modeling methods are investigated. Data obtained from single-beam echo sounder (SBES) are modeled using inverse distance, kriging, local polynomial, minimum curvature, moving average, nearest-neighbor, and Delaunay interpolation methods. Interpolation results are compared with the multibeam echo sounder data which were collected on the same area for determining the accuracy of modeling methods. Depending on the maximum total vertical uncertainty values in hydrographic survey standards, the best results were determined by using the kriging method. The Delaunay, minimum curvature, and inverse distance methods can be used for modeling the SBES data in shallow waters.
ISSN:1420-0597
1573-1499
DOI:10.1007/s10596-013-9347-1