Loading…

Mathematical model of spiral waves propagating in the aorta

The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at th...

Full description

Saved in:
Bibliographic Details
Published in:Fluid dynamics 2013, Vol.48 (1), p.89-96
Main Authors: Batishchev, V. A., Ustinov, Yu. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783
container_end_page 96
container_issue 1
container_start_page 89
container_title Fluid dynamics
container_volume 48
creator Batishchev, V. A.
Ustinov, Yu. A.
description The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.
doi_str_mv 10.1134/S0015462813010109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642326488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642326488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</originalsourceid><addsrcrecordid>eNqNkE1LxEAMhgdRcF39Ad7m6KU6me_Fkyx-wYoH9TzEdrp2aTt1plX8986y3gSRHELI8yZvQsgpsHMAIS-eGAMlNbcgGORY7JEZKCMKq5jZJ7Ntu9j2D8lRShvG2MJoPiOXDzi--Q7HpsSWdqHyLQ01TUMTc_2JHz7RIYYB1xnp17TpaeYphjjiMTmosU3-5CfPycvN9fPyrlg93t4vr1ZFKZgeC80FR0TjeSmsFtJ6ZSxo9FIZVVb8NXsRCKCzIwNC21JUlZQWWL2wzFgxJ2e7udnI--TT6Lomlb5tsfdhSg60zCu0tP9AFXAhBOc6o7BDyxhSir52Q2w6jF8OmNv-1P36adbwnSZltl_76DZhin0-_g_RN2hkdT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512333226</pqid></control><display><type>article</type><title>Mathematical model of spiral waves propagating in the aorta</title><source>Springer Nature</source><creator>Batishchev, V. A. ; Ustinov, Yu. A.</creator><creatorcontrib>Batishchev, V. A. ; Ustinov, Yu. A.</creatorcontrib><description>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462813010109</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Asymptotic expansions ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Cross sections ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Incompressible flow ; Mathematical models ; Physics ; Physics and Astronomy ; Shells ; Spirals ; Wave propagation</subject><ispartof>Fluid dynamics, 2013, Vol.48 (1), p.89-96</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Batishchev, V. A.</creatorcontrib><creatorcontrib>Ustinov, Yu. A.</creatorcontrib><title>Mathematical model of spiral waves propagating in the aorta</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</description><subject>Asymptotic expansions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Cross sections</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shells</subject><subject>Spirals</subject><subject>Wave propagation</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxEAMhgdRcF39Ad7m6KU6me_Fkyx-wYoH9TzEdrp2aTt1plX8986y3gSRHELI8yZvQsgpsHMAIS-eGAMlNbcgGORY7JEZKCMKq5jZJ7Ntu9j2D8lRShvG2MJoPiOXDzi--Q7HpsSWdqHyLQ01TUMTc_2JHz7RIYYB1xnp17TpaeYphjjiMTmosU3-5CfPycvN9fPyrlg93t4vr1ZFKZgeC80FR0TjeSmsFtJ6ZSxo9FIZVVb8NXsRCKCzIwNC21JUlZQWWL2wzFgxJ2e7udnI--TT6Lomlb5tsfdhSg60zCu0tP9AFXAhBOc6o7BDyxhSir52Q2w6jF8OmNv-1P36adbwnSZltl_76DZhin0-_g_RN2hkdT8</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Batishchev, V. A.</creator><creator>Ustinov, Yu. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2013</creationdate><title>Mathematical model of spiral waves propagating in the aorta</title><author>Batishchev, V. A. ; Ustinov, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic expansions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Cross sections</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shells</topic><topic>Spirals</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batishchev, V. A.</creatorcontrib><creatorcontrib>Ustinov, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batishchev, V. A.</au><au>Ustinov, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of spiral waves propagating in the aorta</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2013</date><risdate>2013</risdate><volume>48</volume><issue>1</issue><spage>89</spage><epage>96</epage><pages>89-96</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462813010109</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2013, Vol.48 (1), p.89-96
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_miscellaneous_1642326488
source Springer Nature
subjects Asymptotic expansions
Classical and Continuum Physics
Classical Mechanics
Computational fluid dynamics
Cross sections
Engineering Fluid Dynamics
Fluid- and Aerodynamics
Incompressible flow
Mathematical models
Physics
Physics and Astronomy
Shells
Spirals
Wave propagation
title Mathematical model of spiral waves propagating in the aorta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20spiral%20waves%20propagating%20in%20the%20aorta&rft.jtitle=Fluid%20dynamics&rft.au=Batishchev,%20V.%20A.&rft.date=2013&rft.volume=48&rft.issue=1&rft.spage=89&rft.epage=96&rft.pages=89-96&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462813010109&rft_dat=%3Cproquest_cross%3E1642326488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512333226&rft_id=info:pmid/&rfr_iscdi=true