Loading…
Mathematical model of spiral waves propagating in the aorta
The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at th...
Saved in:
Published in: | Fluid dynamics 2013, Vol.48 (1), p.89-96 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 89 |
container_title | Fluid dynamics |
container_volume | 48 |
creator | Batishchev, V. A. Ustinov, Yu. A. |
description | The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant. |
doi_str_mv | 10.1134/S0015462813010109 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642326488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642326488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</originalsourceid><addsrcrecordid>eNqNkE1LxEAMhgdRcF39Ad7m6KU6me_Fkyx-wYoH9TzEdrp2aTt1plX8986y3gSRHELI8yZvQsgpsHMAIS-eGAMlNbcgGORY7JEZKCMKq5jZJ7Ntu9j2D8lRShvG2MJoPiOXDzi--Q7HpsSWdqHyLQ01TUMTc_2JHz7RIYYB1xnp17TpaeYphjjiMTmosU3-5CfPycvN9fPyrlg93t4vr1ZFKZgeC80FR0TjeSmsFtJ6ZSxo9FIZVVb8NXsRCKCzIwNC21JUlZQWWL2wzFgxJ2e7udnI--TT6Lomlb5tsfdhSg60zCu0tP9AFXAhBOc6o7BDyxhSir52Q2w6jF8OmNv-1P36adbwnSZltl_76DZhin0-_g_RN2hkdT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512333226</pqid></control><display><type>article</type><title>Mathematical model of spiral waves propagating in the aorta</title><source>Springer Nature</source><creator>Batishchev, V. A. ; Ustinov, Yu. A.</creator><creatorcontrib>Batishchev, V. A. ; Ustinov, Yu. A.</creatorcontrib><description>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462813010109</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Asymptotic expansions ; Classical and Continuum Physics ; Classical Mechanics ; Computational fluid dynamics ; Cross sections ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Incompressible flow ; Mathematical models ; Physics ; Physics and Astronomy ; Shells ; Spirals ; Wave propagation</subject><ispartof>Fluid dynamics, 2013, Vol.48 (1), p.89-96</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Batishchev, V. A.</creatorcontrib><creatorcontrib>Ustinov, Yu. A.</creatorcontrib><title>Mathematical model of spiral waves propagating in the aorta</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</description><subject>Asymptotic expansions</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Cross sections</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shells</subject><subject>Spirals</subject><subject>Wave propagation</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxEAMhgdRcF39Ad7m6KU6me_Fkyx-wYoH9TzEdrp2aTt1plX8986y3gSRHELI8yZvQsgpsHMAIS-eGAMlNbcgGORY7JEZKCMKq5jZJ7Ntu9j2D8lRShvG2MJoPiOXDzi--Q7HpsSWdqHyLQ01TUMTc_2JHz7RIYYB1xnp17TpaeYphjjiMTmosU3-5CfPycvN9fPyrlg93t4vr1ZFKZgeC80FR0TjeSmsFtJ6ZSxo9FIZVVb8NXsRCKCzIwNC21JUlZQWWL2wzFgxJ2e7udnI--TT6Lomlb5tsfdhSg60zCu0tP9AFXAhBOc6o7BDyxhSir52Q2w6jF8OmNv-1P36adbwnSZltl_76DZhin0-_g_RN2hkdT8</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Batishchev, V. A.</creator><creator>Ustinov, Yu. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2013</creationdate><title>Mathematical model of spiral waves propagating in the aorta</title><author>Batishchev, V. A. ; Ustinov, Yu. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic expansions</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Cross sections</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shells</topic><topic>Spirals</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batishchev, V. A.</creatorcontrib><creatorcontrib>Ustinov, Yu. A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batishchev, V. A.</au><au>Ustinov, Yu. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of spiral waves propagating in the aorta</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2013</date><risdate>2013</risdate><volume>48</volume><issue>1</issue><spage>89</spage><epage>96</epage><pages>89-96</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462813010109</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2013, Vol.48 (1), p.89-96 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642326488 |
source | Springer Nature |
subjects | Asymptotic expansions Classical and Continuum Physics Classical Mechanics Computational fluid dynamics Cross sections Engineering Fluid Dynamics Fluid- and Aerodynamics Incompressible flow Mathematical models Physics Physics and Astronomy Shells Spirals Wave propagation |
title | Mathematical model of spiral waves propagating in the aorta |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20spiral%20waves%20propagating%20in%20the%20aorta&rft.jtitle=Fluid%20dynamics&rft.au=Batishchev,%20V.%20A.&rft.date=2013&rft.volume=48&rft.issue=1&rft.spage=89&rft.epage=96&rft.pages=89-96&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462813010109&rft_dat=%3Cproquest_cross%3E1642326488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-6232aaa7e2c386348e57816ae4575cd2b0093a11697671368c3dd44810f980783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512333226&rft_id=info:pmid/&rfr_iscdi=true |