Loading…
Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications
By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between t...
Saved in:
Published in: | Advanced materials (Weinheim) 2013-12, Vol.25 (45), p.6602-6606 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03 |
---|---|
cites | cdi_FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03 |
container_end_page | 6606 |
container_issue | 45 |
container_start_page | 6602 |
container_title | Advanced materials (Weinheim) |
container_volume | 25 |
creator | Romano, Mark S. Li, Na Antiohos, Dennis Razal, Joselito M. Nattestad, Andrew Beirne, Stephen Fang, Shaoli Chen, Yongsheng Jalili, Rouhollah Wallace, Gordon G. Baughman, Ray Chen, Jun |
description | By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance. |
doi_str_mv | 10.1002/adma.201303295 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642328500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642328500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03</originalsourceid><addsrcrecordid>eNqNkc9P1EAUxydGIit69Wjm6KXrm5_tHDcL7pogRIIh4eBkOn2FatupMy2w_71LFjfc5PQun-8nL_kQ8oHBnAHwz67q3JwDEyC4Ua_IjCnOMglGvSYzMEJlRsvikLxN6RcAGA36DTnkkukceD4jP5culqGnZ64P41QizegFVpPHiq6iG26xR3r-0FRIl6EbQmpGTLQOkV7eYuxcS096jDcbunbxDtPY9Dd0MQxt493YhD69Iwe1axO-f7pH5MeXk8vlOjs9X31dLk4zr5RWmSsd-EKJwiOry4rVsi55LoHV3JjaeSxFyV1tGPeFAceE8a4UApEXXFcI4oh82nmHGP5M20ds1ySPbet6DFOyTEsueKHgBajMlVJSyJegWrFcaa226HyH-hhSiljbITadixvLwD6Wso-l7L7UdvDxyT2VHVZ7_F-aLWB2wH3T4uY_Ors4_rZ4Ls922yaN-LDfuvjb6lzkyl6drezFsfi-NuragvgLsrCuZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465175665</pqid></control><display><type>article</type><title>Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Romano, Mark S. ; Li, Na ; Antiohos, Dennis ; Razal, Joselito M. ; Nattestad, Andrew ; Beirne, Stephen ; Fang, Shaoli ; Chen, Yongsheng ; Jalili, Rouhollah ; Wallace, Gordon G. ; Baughman, Ray ; Chen, Jun</creator><creatorcontrib>Romano, Mark S. ; Li, Na ; Antiohos, Dennis ; Razal, Joselito M. ; Nattestad, Andrew ; Beirne, Stephen ; Fang, Shaoli ; Chen, Yongsheng ; Jalili, Rouhollah ; Wallace, Gordon G. ; Baughman, Ray ; Chen, Jun</creatorcontrib><description>By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201303295</identifier><identifier>PMID: 24167027</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>carbon nanotubes ; Diffusion ; Electrochemical Techniques ; Electrodes ; Electrolytes ; Energy harvesting ; Ferricyanides - chemistry ; Ferrocyanides - chemistry ; Graphene ; Graphite - chemistry ; Nanotubes, Carbon - chemistry ; Oxides ; Oxides - chemistry ; Porosity ; reduced graphene oxide ; Surface area ; thermocells ; thermogalvanic cells ; Tortuosity</subject><ispartof>Advanced materials (Weinheim), 2013-12, Vol.25 (45), p.6602-6606</ispartof><rights>2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03</citedby><cites>FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24167027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romano, Mark S.</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Antiohos, Dennis</creatorcontrib><creatorcontrib>Razal, Joselito M.</creatorcontrib><creatorcontrib>Nattestad, Andrew</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Fang, Shaoli</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Baughman, Ray</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.</description><subject>carbon nanotubes</subject><subject>Diffusion</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy harvesting</subject><subject>Ferricyanides - chemistry</subject><subject>Ferrocyanides - chemistry</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Porosity</subject><subject>reduced graphene oxide</subject><subject>Surface area</subject><subject>thermocells</subject><subject>thermogalvanic cells</subject><subject>Tortuosity</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc9P1EAUxydGIit69Wjm6KXrm5_tHDcL7pogRIIh4eBkOn2FatupMy2w_71LFjfc5PQun-8nL_kQ8oHBnAHwz67q3JwDEyC4Ua_IjCnOMglGvSYzMEJlRsvikLxN6RcAGA36DTnkkukceD4jP5culqGnZ64P41QizegFVpPHiq6iG26xR3r-0FRIl6EbQmpGTLQOkV7eYuxcS096jDcbunbxDtPY9Dd0MQxt493YhD69Iwe1axO-f7pH5MeXk8vlOjs9X31dLk4zr5RWmSsd-EKJwiOry4rVsi55LoHV3JjaeSxFyV1tGPeFAceE8a4UApEXXFcI4oh82nmHGP5M20ds1ySPbet6DFOyTEsueKHgBajMlVJSyJegWrFcaa226HyH-hhSiljbITadixvLwD6Wso-l7L7UdvDxyT2VHVZ7_F-aLWB2wH3T4uY_Ors4_rZ4Ls922yaN-LDfuvjb6lzkyl6drezFsfi-NuragvgLsrCuZQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Romano, Mark S.</creator><creator>Li, Na</creator><creator>Antiohos, Dennis</creator><creator>Razal, Joselito M.</creator><creator>Nattestad, Andrew</creator><creator>Beirne, Stephen</creator><creator>Fang, Shaoli</creator><creator>Chen, Yongsheng</creator><creator>Jalili, Rouhollah</creator><creator>Wallace, Gordon G.</creator><creator>Baughman, Ray</creator><creator>Chen, Jun</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications</title><author>Romano, Mark S. ; Li, Na ; Antiohos, Dennis ; Razal, Joselito M. ; Nattestad, Andrew ; Beirne, Stephen ; Fang, Shaoli ; Chen, Yongsheng ; Jalili, Rouhollah ; Wallace, Gordon G. ; Baughman, Ray ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>carbon nanotubes</topic><topic>Diffusion</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy harvesting</topic><topic>Ferricyanides - chemistry</topic><topic>Ferrocyanides - chemistry</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Porosity</topic><topic>reduced graphene oxide</topic><topic>Surface area</topic><topic>thermocells</topic><topic>thermogalvanic cells</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Mark S.</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Antiohos, Dennis</creatorcontrib><creatorcontrib>Razal, Joselito M.</creatorcontrib><creatorcontrib>Nattestad, Andrew</creatorcontrib><creatorcontrib>Beirne, Stephen</creatorcontrib><creatorcontrib>Fang, Shaoli</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Jalili, Rouhollah</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Baughman, Ray</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Mark S.</au><au>Li, Na</au><au>Antiohos, Dennis</au><au>Razal, Joselito M.</au><au>Nattestad, Andrew</au><au>Beirne, Stephen</au><au>Fang, Shaoli</au><au>Chen, Yongsheng</au><au>Jalili, Rouhollah</au><au>Wallace, Gordon G.</au><au>Baughman, Ray</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>25</volume><issue>45</issue><spage>6602</spage><epage>6606</epage><pages>6602-6606</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24167027</pmid><doi>10.1002/adma.201303295</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2013-12, Vol.25 (45), p.6602-6606 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642328500 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | carbon nanotubes Diffusion Electrochemical Techniques Electrodes Electrolytes Energy harvesting Ferricyanides - chemistry Ferrocyanides - chemistry Graphene Graphite - chemistry Nanotubes, Carbon - chemistry Oxides Oxides - chemistry Porosity reduced graphene oxide Surface area thermocells thermogalvanic cells Tortuosity |
title | Carbon Nanotube - Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20-%20Reduced%20Graphene%20Oxide%20Composites%20for%20Thermal%20Energy%20Harvesting%20Applications&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Romano,%20Mark%20S.&rft.date=2013-12-01&rft.volume=25&rft.issue=45&rft.spage=6602&rft.epage=6606&rft.pages=6602-6606&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201303295&rft_dat=%3Cproquest_cross%3E1642328500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5565-aba0c8538ce1fbd1f4fb27401f299faceb3b2af912c890a139cab33ee2826de03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1465175665&rft_id=info:pmid/24167027&rfr_iscdi=true |