Loading…
Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells
Direct formic acid fuel cells (DFAFCs) are promising portable energy conversion devices for supplying our off-grid energy demands. However, traditional Pt-based catalysts suffer from poor performance; consequently the precious metal loading in an actual fuel cell has to be maintained at a very high...
Saved in:
Published in: | Chemical science (Cambridge) 2014-01, Vol.5 (1), p.403-409 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Direct formic acid fuel cells (DFAFCs) are promising portable energy conversion devices for supplying our off-grid energy demands. However, traditional Pt-based catalysts suffer from poor performance; consequently the precious metal loading in an actual fuel cell has to be maintained at a very high value, typically orders of magnitude higher than the acceptable level. Through a molecular self-assembly/electro-deposition process, Pt atoms are effectively dispersed onto the surface of a nanoporous gold substrate, and the resulting nanocomposites demonstrate superior electrocatalytic performance toward formic acid electro-oxidation, which can be attributed to a nearly ideal catalyst configuration where all the Pt atoms are involved in a highly desired direct reaction path. In both half-cell electrochemical testing and actual DFAFCs, these rationally designed electrodes show over two orders of magnitude improvement in Pt efficiency, as compared with the state-of-the-art Pt/C catalyst. This design strategy allows customized development of new generation electrocatalysts for high performance energy saving technologies. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/c3sc52792a |