Loading…

Advanced materials processing for high-efficiency thin-film silicon solar cells

We report on recent developments of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) for high-efficiency thin-film silicon solar cells. For a-Si:H, the light absorber layers were grown by a remote plasma technique using a triode electrode configuration in plasma-enhance...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2013-12, Vol.119, p.156-162
Main Authors: Matsui, Takuya, Kondo, Michio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3
cites cdi_FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3
container_end_page 162
container_issue
container_start_page 156
container_title Solar energy materials and solar cells
container_volume 119
creator Matsui, Takuya
Kondo, Michio
description We report on recent developments of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) for high-efficiency thin-film silicon solar cells. For a-Si:H, the light absorber layers were grown by a remote plasma technique using a triode electrode configuration in plasma-enhanced chemical vapor deposition (PECVD). Despite the relatively low deposition rate (0.01–0.03nm/s) compared to the conventional diode-type PECVD process (~0.2nm/s), the light-induced degradation in conversion efficiency (Δη/ηini) of single-junction solar cell is substantially reduced (e.g., Δη/ηini~10% at an absorber thickness of 250nm). As a result, we have obtained confirmed stabilized efficiencies of 9.6% and 11.9% for a-Si:H single-junction and a-Si:H/μc-Si:H tandem solar cells, respectively. Meanwhile, for μc-Si:H solar cells, we have investigated the structural properties of the μc-Si:H absorber layers grown at high deposition rates (>2nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. •a-Si:H layers are grown by PECVD with a triode electrode configuration.•The light-induced degradation of a-Si:H single-junction solar cell is substantially reduced.•Confirmed stabilized efficiencies of 9.6% (single junction) and 11.9% (tandem) are attained.•Structural properties of the μc-Si:H grown at high deposition rates (>2nm/s) are investigated.•Several design criteria for the device grade μc-Si:H are proposed.
doi_str_mv 10.1016/j.solmat.2013.05.056
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642330370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024813002791</els_id><sourcerecordid>1475548192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWB__wMUs3Uy9eU82ghRfUHCj65BmbmzKdEaTsdB_b2pdW-HC3Xzn3MM9hFxRmFKg6mY1zUO3duOUAeVTkGXUEZnQRpuac9MckwkYpmtgojklZzmvAIApLibk5a7duN5jWxU9pui6XH2kwWPOsX-vwpCqZXxf1hhC9BF7v63GZezrELt1lWMX_dBX5bpLlceuyxfkJBQPvPzd5-Tt4f519lTPXx6fZ3fz2kshx1qi92bh9cJh0ypBpTcqKAYCtFlgwxU1OnjVBqa5a6lS2IiGUi2BOyYd8nNyvfctYT-_MI92HfMugetx-MqWKsE4B67hXyjTlBpzGJXQaMV4efNBVGgpS2bDCir2qE9DzgmD_Uhx7dLWUrC7Au3K7gu0uwItyDKqyG73Mix_3ERMNv80gG1M6EfbDvFvg291uqTp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475548192</pqid></control><display><type>article</type><title>Advanced materials processing for high-efficiency thin-film silicon solar cells</title><source>ScienceDirect Journals</source><creator>Matsui, Takuya ; Kondo, Michio</creator><creatorcontrib>Matsui, Takuya ; Kondo, Michio</creatorcontrib><description>We report on recent developments of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) for high-efficiency thin-film silicon solar cells. For a-Si:H, the light absorber layers were grown by a remote plasma technique using a triode electrode configuration in plasma-enhanced chemical vapor deposition (PECVD). Despite the relatively low deposition rate (0.01–0.03nm/s) compared to the conventional diode-type PECVD process (~0.2nm/s), the light-induced degradation in conversion efficiency (Δη/ηini) of single-junction solar cell is substantially reduced (e.g., Δη/ηini~10% at an absorber thickness of 250nm). As a result, we have obtained confirmed stabilized efficiencies of 9.6% and 11.9% for a-Si:H single-junction and a-Si:H/μc-Si:H tandem solar cells, respectively. Meanwhile, for μc-Si:H solar cells, we have investigated the structural properties of the μc-Si:H absorber layers grown at high deposition rates (&gt;2nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. •a-Si:H layers are grown by PECVD with a triode electrode configuration.•The light-induced degradation of a-Si:H single-junction solar cell is substantially reduced.•Confirmed stabilized efficiencies of 9.6% (single junction) and 11.9% (tandem) are attained.•Structural properties of the μc-Si:H grown at high deposition rates (&gt;2nm/s) are investigated.•Several design criteria for the device grade μc-Si:H are proposed.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2013.05.056</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical vapor deposition ; Deposition ; Devices ; Electrodes ; Grain boundaries ; Hydrogenated amorphous silicon ; Hydrogenated microcrystalline silicon ; Light-soaking stability ; Microstructure ; Photovoltaic cells ; Plasma-enhanced chemical vapor deposition ; Silicon ; Solar cells ; Tandem cell ; Thin films</subject><ispartof>Solar energy materials and solar cells, 2013-12, Vol.119, p.156-162</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3</citedby><cites>FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Matsui, Takuya</creatorcontrib><creatorcontrib>Kondo, Michio</creatorcontrib><title>Advanced materials processing for high-efficiency thin-film silicon solar cells</title><title>Solar energy materials and solar cells</title><description>We report on recent developments of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) for high-efficiency thin-film silicon solar cells. For a-Si:H, the light absorber layers were grown by a remote plasma technique using a triode electrode configuration in plasma-enhanced chemical vapor deposition (PECVD). Despite the relatively low deposition rate (0.01–0.03nm/s) compared to the conventional diode-type PECVD process (~0.2nm/s), the light-induced degradation in conversion efficiency (Δη/ηini) of single-junction solar cell is substantially reduced (e.g., Δη/ηini~10% at an absorber thickness of 250nm). As a result, we have obtained confirmed stabilized efficiencies of 9.6% and 11.9% for a-Si:H single-junction and a-Si:H/μc-Si:H tandem solar cells, respectively. Meanwhile, for μc-Si:H solar cells, we have investigated the structural properties of the μc-Si:H absorber layers grown at high deposition rates (&gt;2nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. •a-Si:H layers are grown by PECVD with a triode electrode configuration.•The light-induced degradation of a-Si:H single-junction solar cell is substantially reduced.•Confirmed stabilized efficiencies of 9.6% (single junction) and 11.9% (tandem) are attained.•Structural properties of the μc-Si:H grown at high deposition rates (&gt;2nm/s) are investigated.•Several design criteria for the device grade μc-Si:H are proposed.</description><subject>Chemical vapor deposition</subject><subject>Deposition</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Grain boundaries</subject><subject>Hydrogenated amorphous silicon</subject><subject>Hydrogenated microcrystalline silicon</subject><subject>Light-soaking stability</subject><subject>Microstructure</subject><subject>Photovoltaic cells</subject><subject>Plasma-enhanced chemical vapor deposition</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Tandem cell</subject><subject>Thin films</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEUhYMoWB__wMUs3Uy9eU82ghRfUHCj65BmbmzKdEaTsdB_b2pdW-HC3Xzn3MM9hFxRmFKg6mY1zUO3duOUAeVTkGXUEZnQRpuac9MckwkYpmtgojklZzmvAIApLibk5a7duN5jWxU9pui6XH2kwWPOsX-vwpCqZXxf1hhC9BF7v63GZezrELt1lWMX_dBX5bpLlceuyxfkJBQPvPzd5-Tt4f519lTPXx6fZ3fz2kshx1qi92bh9cJh0ypBpTcqKAYCtFlgwxU1OnjVBqa5a6lS2IiGUi2BOyYd8nNyvfctYT-_MI92HfMugetx-MqWKsE4B67hXyjTlBpzGJXQaMV4efNBVGgpS2bDCir2qE9DzgmD_Uhx7dLWUrC7Au3K7gu0uwItyDKqyG73Mix_3ERMNv80gG1M6EfbDvFvg291uqTp</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Matsui, Takuya</creator><creator>Kondo, Michio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Advanced materials processing for high-efficiency thin-film silicon solar cells</title><author>Matsui, Takuya ; Kondo, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical vapor deposition</topic><topic>Deposition</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Grain boundaries</topic><topic>Hydrogenated amorphous silicon</topic><topic>Hydrogenated microcrystalline silicon</topic><topic>Light-soaking stability</topic><topic>Microstructure</topic><topic>Photovoltaic cells</topic><topic>Plasma-enhanced chemical vapor deposition</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Tandem cell</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Takuya</creatorcontrib><creatorcontrib>Kondo, Michio</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Takuya</au><au>Kondo, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced materials processing for high-efficiency thin-film silicon solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>119</volume><spage>156</spage><epage>162</epage><pages>156-162</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We report on recent developments of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) for high-efficiency thin-film silicon solar cells. For a-Si:H, the light absorber layers were grown by a remote plasma technique using a triode electrode configuration in plasma-enhanced chemical vapor deposition (PECVD). Despite the relatively low deposition rate (0.01–0.03nm/s) compared to the conventional diode-type PECVD process (~0.2nm/s), the light-induced degradation in conversion efficiency (Δη/ηini) of single-junction solar cell is substantially reduced (e.g., Δη/ηini~10% at an absorber thickness of 250nm). As a result, we have obtained confirmed stabilized efficiencies of 9.6% and 11.9% for a-Si:H single-junction and a-Si:H/μc-Si:H tandem solar cells, respectively. Meanwhile, for μc-Si:H solar cells, we have investigated the structural properties of the μc-Si:H absorber layers grown at high deposition rates (&gt;2nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. •a-Si:H layers are grown by PECVD with a triode electrode configuration.•The light-induced degradation of a-Si:H single-junction solar cell is substantially reduced.•Confirmed stabilized efficiencies of 9.6% (single junction) and 11.9% (tandem) are attained.•Structural properties of the μc-Si:H grown at high deposition rates (&gt;2nm/s) are investigated.•Several design criteria for the device grade μc-Si:H are proposed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2013.05.056</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2013-12, Vol.119, p.156-162
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1642330370
source ScienceDirect Journals
subjects Chemical vapor deposition
Deposition
Devices
Electrodes
Grain boundaries
Hydrogenated amorphous silicon
Hydrogenated microcrystalline silicon
Light-soaking stability
Microstructure
Photovoltaic cells
Plasma-enhanced chemical vapor deposition
Silicon
Solar cells
Tandem cell
Thin films
title Advanced materials processing for high-efficiency thin-film silicon solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20materials%20processing%20for%20high-efficiency%20thin-film%20silicon%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Matsui,%20Takuya&rft.date=2013-12-01&rft.volume=119&rft.spage=156&rft.epage=162&rft.pages=156-162&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2013.05.056&rft_dat=%3Cproquest_cross%3E1475548192%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-5ecc9bc7bae8d6415c96f6204079be836197fc6df273ad166e848117503a25ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1475548192&rft_id=info:pmid/&rfr_iscdi=true