Loading…

sox21a directs lateral line patterning by modulating FGF signaling

ABSTRACT The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a la...

Full description

Saved in:
Bibliographic Details
Published in:Developmental neurobiology (Hoboken, N.J.) N.J.), 2015-01, Vol.75 (1), p.80-92
Main Authors: Ariza‐Cosano, Ana, Bensimon‐Brito, Anabela, Gómez‐Skarmeta, José Luis, Bessa, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3
cites cdi_FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3
container_end_page 92
container_issue 1
container_start_page 80
container_title Developmental neurobiology (Hoboken, N.J.)
container_volume 75
creator Ariza‐Cosano, Ana
Bensimon‐Brito, Anabela
Gómez‐Skarmeta, José Luis
Bessa, José
description ABSTRACT The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a sensory organ present in fish and amphibians, develops from a primordium that migrates along the flanks of the animal periodically depositing neuromasts, the pLL functional units. In zebrafish (Danio rerio), the developmental program of the pLL is triggered by the transit of progenitor cells from a Wnt to a Fgf signaling domain. It has been proposed that these two fields are defined by the antagonistic activity of these two signaling pathways, but how they are formed and maintained is still an open question in the development of the pLL. In this work, we show that sox21a, an HMG ‐box transcription factor, is expressed within the Fgf domain. We demonstrate that, while the Fgf signaling pathway do not control sox21a, knockdown of sox21a causes impairment of Fgf signaling, expansion of the Wnt signaling domain and disruption of neuromast development. These results suggest that sox21a is a key player in the pLL primordium patterning, fine‐tuning the border of the Fgf and Wnt signaling domains. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 80–92, 2015
doi_str_mv 10.1002/dneu.22211
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642614602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642614602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3</originalsourceid><addsrcrecordid>eNqN0U1LwzAYB_AgipvTix9ACl5E6MyTt7VHndsUhl4ceCtpk4yOvsykRfftzda5gwfxlDzkxz8kf4QuAQ8BY3KnKt0OCSEAR6gPMSVhxMT78WHPoYfOnFthzCkR-BT1CMeMxSPeRw-u_iIgA5VbnTUuKGSjrSyCIq90sJaNn6q8WgbpJihr1frj7TSdTQOXLyvp2fIcnRhZOH2xXwdoMZ28jZ_C-evseXw_DzMmMIRGY6VMhjMAMBSrWDEAIihn0nCKMfDUxKORhpjrjEeZZiIFLpVSmpgoMnSAbrrcta0_Wu2apMxdpotCVrpuXQKCEQH-LvIPStmIMM5jT69_0VXdWv-ynSIiEkCoV7edymztnNUmWdu8lHaTAE62JSTbEpJdCR5f7SPbtNTqQH9-3QPowGde6M0fUcnjy2TRhX4D3VCPxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1632686123</pqid></control><display><type>article</type><title>sox21a directs lateral line patterning by modulating FGF signaling</title><source>Wiley</source><creator>Ariza‐Cosano, Ana ; Bensimon‐Brito, Anabela ; Gómez‐Skarmeta, José Luis ; Bessa, José</creator><creatorcontrib>Ariza‐Cosano, Ana ; Bensimon‐Brito, Anabela ; Gómez‐Skarmeta, José Luis ; Bessa, José</creatorcontrib><description>ABSTRACT The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a sensory organ present in fish and amphibians, develops from a primordium that migrates along the flanks of the animal periodically depositing neuromasts, the pLL functional units. In zebrafish (Danio rerio), the developmental program of the pLL is triggered by the transit of progenitor cells from a Wnt to a Fgf signaling domain. It has been proposed that these two fields are defined by the antagonistic activity of these two signaling pathways, but how they are formed and maintained is still an open question in the development of the pLL. In this work, we show that sox21a, an HMG ‐box transcription factor, is expressed within the Fgf domain. We demonstrate that, while the Fgf signaling pathway do not control sox21a, knockdown of sox21a causes impairment of Fgf signaling, expansion of the Wnt signaling domain and disruption of neuromast development. These results suggest that sox21a is a key player in the pLL primordium patterning, fine‐tuning the border of the Fgf and Wnt signaling domains. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 80–92, 2015</description><identifier>ISSN: 1932-8451</identifier><identifier>EISSN: 1932-846X</identifier><identifier>DOI: 10.1002/dneu.22211</identifier><identifier>PMID: 25044975</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Body Patterning - physiology ; Danio rerio ; development ; Embryo, Nonmammalian ; Fibroblast Growth Factors - metabolism ; Freshwater ; Lateral Line System - embryology ; patterning ; posterior lateral line ; Signal Transduction - physiology ; sox21a ; SOXB2 Transcription Factors - physiology ; Wnt Signaling Pathway - physiology ; Zebrafish ; Zebrafish Proteins - metabolism ; Zebrafish Proteins - physiology</subject><ispartof>Developmental neurobiology (Hoboken, N.J.), 2015-01, Vol.75 (1), p.80-92</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3</citedby><cites>FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25044975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ariza‐Cosano, Ana</creatorcontrib><creatorcontrib>Bensimon‐Brito, Anabela</creatorcontrib><creatorcontrib>Gómez‐Skarmeta, José Luis</creatorcontrib><creatorcontrib>Bessa, José</creatorcontrib><title>sox21a directs lateral line patterning by modulating FGF signaling</title><title>Developmental neurobiology (Hoboken, N.J.)</title><addtitle>Dev Neurobiol</addtitle><description>ABSTRACT The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a sensory organ present in fish and amphibians, develops from a primordium that migrates along the flanks of the animal periodically depositing neuromasts, the pLL functional units. In zebrafish (Danio rerio), the developmental program of the pLL is triggered by the transit of progenitor cells from a Wnt to a Fgf signaling domain. It has been proposed that these two fields are defined by the antagonistic activity of these two signaling pathways, but how they are formed and maintained is still an open question in the development of the pLL. In this work, we show that sox21a, an HMG ‐box transcription factor, is expressed within the Fgf domain. We demonstrate that, while the Fgf signaling pathway do not control sox21a, knockdown of sox21a causes impairment of Fgf signaling, expansion of the Wnt signaling domain and disruption of neuromast development. These results suggest that sox21a is a key player in the pLL primordium patterning, fine‐tuning the border of the Fgf and Wnt signaling domains. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 80–92, 2015</description><subject>Animals</subject><subject>Body Patterning - physiology</subject><subject>Danio rerio</subject><subject>development</subject><subject>Embryo, Nonmammalian</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Freshwater</subject><subject>Lateral Line System - embryology</subject><subject>patterning</subject><subject>posterior lateral line</subject><subject>Signal Transduction - physiology</subject><subject>sox21a</subject><subject>SOXB2 Transcription Factors - physiology</subject><subject>Wnt Signaling Pathway - physiology</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - metabolism</subject><subject>Zebrafish Proteins - physiology</subject><issn>1932-8451</issn><issn>1932-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LwzAYB_AgipvTix9ACl5E6MyTt7VHndsUhl4ceCtpk4yOvsykRfftzda5gwfxlDzkxz8kf4QuAQ8BY3KnKt0OCSEAR6gPMSVhxMT78WHPoYfOnFthzCkR-BT1CMeMxSPeRw-u_iIgA5VbnTUuKGSjrSyCIq90sJaNn6q8WgbpJihr1frj7TSdTQOXLyvp2fIcnRhZOH2xXwdoMZ28jZ_C-evseXw_DzMmMIRGY6VMhjMAMBSrWDEAIihn0nCKMfDUxKORhpjrjEeZZiIFLpVSmpgoMnSAbrrcta0_Wu2apMxdpotCVrpuXQKCEQH-LvIPStmIMM5jT69_0VXdWv-ynSIiEkCoV7edymztnNUmWdu8lHaTAE62JSTbEpJdCR5f7SPbtNTqQH9-3QPowGde6M0fUcnjy2TRhX4D3VCPxA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Ariza‐Cosano, Ana</creator><creator>Bensimon‐Brito, Anabela</creator><creator>Gómez‐Skarmeta, José Luis</creator><creator>Bessa, José</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201501</creationdate><title>sox21a directs lateral line patterning by modulating FGF signaling</title><author>Ariza‐Cosano, Ana ; Bensimon‐Brito, Anabela ; Gómez‐Skarmeta, José Luis ; Bessa, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Body Patterning - physiology</topic><topic>Danio rerio</topic><topic>development</topic><topic>Embryo, Nonmammalian</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Freshwater</topic><topic>Lateral Line System - embryology</topic><topic>patterning</topic><topic>posterior lateral line</topic><topic>Signal Transduction - physiology</topic><topic>sox21a</topic><topic>SOXB2 Transcription Factors - physiology</topic><topic>Wnt Signaling Pathway - physiology</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - metabolism</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ariza‐Cosano, Ana</creatorcontrib><creatorcontrib>Bensimon‐Brito, Anabela</creatorcontrib><creatorcontrib>Gómez‐Skarmeta, José Luis</creatorcontrib><creatorcontrib>Bessa, José</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Developmental neurobiology (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ariza‐Cosano, Ana</au><au>Bensimon‐Brito, Anabela</au><au>Gómez‐Skarmeta, José Luis</au><au>Bessa, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sox21a directs lateral line patterning by modulating FGF signaling</atitle><jtitle>Developmental neurobiology (Hoboken, N.J.)</jtitle><addtitle>Dev Neurobiol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>75</volume><issue>1</issue><spage>80</spage><epage>92</epage><pages>80-92</pages><issn>1932-8451</issn><eissn>1932-846X</eissn><abstract>ABSTRACT The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a sensory organ present in fish and amphibians, develops from a primordium that migrates along the flanks of the animal periodically depositing neuromasts, the pLL functional units. In zebrafish (Danio rerio), the developmental program of the pLL is triggered by the transit of progenitor cells from a Wnt to a Fgf signaling domain. It has been proposed that these two fields are defined by the antagonistic activity of these two signaling pathways, but how they are formed and maintained is still an open question in the development of the pLL. In this work, we show that sox21a, an HMG ‐box transcription factor, is expressed within the Fgf domain. We demonstrate that, while the Fgf signaling pathway do not control sox21a, knockdown of sox21a causes impairment of Fgf signaling, expansion of the Wnt signaling domain and disruption of neuromast development. These results suggest that sox21a is a key player in the pLL primordium patterning, fine‐tuning the border of the Fgf and Wnt signaling domains. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 80–92, 2015</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>25044975</pmid><doi>10.1002/dneu.22211</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-8451
ispartof Developmental neurobiology (Hoboken, N.J.), 2015-01, Vol.75 (1), p.80-92
issn 1932-8451
1932-846X
language eng
recordid cdi_proquest_miscellaneous_1642614602
source Wiley
subjects Animals
Body Patterning - physiology
Danio rerio
development
Embryo, Nonmammalian
Fibroblast Growth Factors - metabolism
Freshwater
Lateral Line System - embryology
patterning
posterior lateral line
Signal Transduction - physiology
sox21a
SOXB2 Transcription Factors - physiology
Wnt Signaling Pathway - physiology
Zebrafish
Zebrafish Proteins - metabolism
Zebrafish Proteins - physiology
title sox21a directs lateral line patterning by modulating FGF signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sox21a%20directs%20lateral%20line%20patterning%20by%20modulating%20FGF%20signaling&rft.jtitle=Developmental%20neurobiology%20(Hoboken,%20N.J.)&rft.au=Ariza%E2%80%90Cosano,%20Ana&rft.date=2015-01&rft.volume=75&rft.issue=1&rft.spage=80&rft.epage=92&rft.pages=80-92&rft.issn=1932-8451&rft.eissn=1932-846X&rft_id=info:doi/10.1002/dneu.22211&rft_dat=%3Cproquest_cross%3E1642614602%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4601-fe0ddfc0c111f30d9d41126354af530015bf977e195ec58ce46b15addde2f88f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1632686123&rft_id=info:pmid/25044975&rfr_iscdi=true