Loading…

Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster

ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, althoug...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) 2015-02, Vol.523 (3), p.530-544
Main Authors: Grabe, Veit, Strutz, Antonia, Baschwitz, Amelie, Hansson, Bill S., Sachse, Silke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653
cites cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653
container_end_page 544
container_issue 3
container_start_page 530
container_title Journal of comparative neurology (1911)
container_volume 523
creator Grabe, Veit
Strutz, Antonia
Baschwitz, Amelie
Hansson, Bill S.
Sachse, Silke
description ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc. By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.
doi_str_mv 10.1002/cne.23697
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642614679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3527592331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMoOl4WvoAU3Oiimktz0ixlRkdlUBeK4Cak7RmNdpqx6Xh5ezOOuhAEV4HkOx85_0_INqMHjFJ-WDZ4wAVotUR6jGpIdQ5smfTiG0u1BrVG1kN4pJRqLfJVssal4Aoy1iOnA3fvOlsnrkle3ItPxCCxXW1D4sdJ94CJbTpsmgjUvsD55aD1wU8fXG2TCda28fc2dNhukpWxrQNufZ0b5Obk-Lp_mo4uh2f9o1FaSi5VKgVyUSpRFUoWZVlIpiUrK0Cuc85hnGlbqVwjrSqqGGeolaCUCQUAloMUG2Rv4Z22_nmGoTMTF0qs40_Qz4JhkHFgGSj9D1QorSXQuXX3F_roZ21c-5OCDLJc00jtL6gyZhBaHJtp6ya2fTeMmnkTJjZhPpuI7M6XcVZMsPohv6OPwOECeHU1vv9tMv2L429luphwMfC3nwnbPhlQQklzezE0o4G4Euf93NyJD0Rmnbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636464890</pqid></control><display><type>article</type><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><source>Wiley</source><creator>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</creator><creatorcontrib>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</creatorcontrib><description>ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc. By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23697</identifier><identifier>PMID: 25327641</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Arthropod Antennae - anatomy &amp; histology ; Arthropod Antennae - metabolism ; Brain - anatomy &amp; histology ; Brain - metabolism ; Brain Mapping ; Drosophila melanogaster ; Drosophila melanogaster - anatomy &amp; histology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; glomeruli ; Imaging, Three-Dimensional ; in vitro artifacts ; In Vitro Techniques ; in vivo neuropil marker ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Nerve Net - anatomy &amp; histology ; Nerve Net - metabolism ; olfactory system ; Transcription Factors - metabolism</subject><ispartof>Journal of comparative neurology (1911), 2015-02, Vol.523 (3), p.530-544</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</citedby><cites>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25327641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabe, Veit</creatorcontrib><creatorcontrib>Strutz, Antonia</creatorcontrib><creatorcontrib>Baschwitz, Amelie</creatorcontrib><creatorcontrib>Hansson, Bill S.</creatorcontrib><creatorcontrib>Sachse, Silke</creatorcontrib><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc. By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Arthropod Antennae - anatomy &amp; histology</subject><subject>Arthropod Antennae - metabolism</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - anatomy &amp; histology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>glomeruli</subject><subject>Imaging, Three-Dimensional</subject><subject>in vitro artifacts</subject><subject>In Vitro Techniques</subject><subject>in vivo neuropil marker</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - metabolism</subject><subject>olfactory system</subject><subject>Transcription Factors - metabolism</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkctKxDAUhoMoOl4WvoAU3Oiimktz0ixlRkdlUBeK4Cak7RmNdpqx6Xh5ezOOuhAEV4HkOx85_0_INqMHjFJ-WDZ4wAVotUR6jGpIdQ5smfTiG0u1BrVG1kN4pJRqLfJVssal4Aoy1iOnA3fvOlsnrkle3ItPxCCxXW1D4sdJ94CJbTpsmgjUvsD55aD1wU8fXG2TCda28fc2dNhukpWxrQNufZ0b5Obk-Lp_mo4uh2f9o1FaSi5VKgVyUSpRFUoWZVlIpiUrK0Cuc85hnGlbqVwjrSqqGGeolaCUCQUAloMUG2Rv4Z22_nmGoTMTF0qs40_Qz4JhkHFgGSj9D1QorSXQuXX3F_roZ21c-5OCDLJc00jtL6gyZhBaHJtp6ya2fTeMmnkTJjZhPpuI7M6XcVZMsPohv6OPwOECeHU1vv9tMv2L429luphwMfC3nwnbPhlQQklzezE0o4G4Euf93NyJD0Rmnbs</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Grabe, Veit</creator><creator>Strutz, Antonia</creator><creator>Baschwitz, Amelie</creator><creator>Hansson, Bill S.</creator><creator>Sachse, Silke</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>20150215</creationdate><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><author>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Arthropod Antennae - anatomy &amp; histology</topic><topic>Arthropod Antennae - metabolism</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - anatomy &amp; histology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>glomeruli</topic><topic>Imaging, Three-Dimensional</topic><topic>in vitro artifacts</topic><topic>In Vitro Techniques</topic><topic>in vivo neuropil marker</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - metabolism</topic><topic>olfactory system</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabe, Veit</creatorcontrib><creatorcontrib>Strutz, Antonia</creatorcontrib><creatorcontrib>Baschwitz, Amelie</creatorcontrib><creatorcontrib>Hansson, Bill S.</creatorcontrib><creatorcontrib>Sachse, Silke</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabe, Veit</au><au>Strutz, Antonia</au><au>Baschwitz, Amelie</au><au>Hansson, Bill S.</au><au>Sachse, Silke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>523</volume><issue>3</issue><spage>530</spage><epage>544</epage><pages>530-544</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc. By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25327641</pmid><doi>10.1002/cne.23697</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2015-02, Vol.523 (3), p.530-544
issn 0021-9967
1096-9861
language eng
recordid cdi_proquest_miscellaneous_1642614679
source Wiley
subjects Animals
Animals, Genetically Modified
Arthropod Antennae - anatomy & histology
Arthropod Antennae - metabolism
Brain - anatomy & histology
Brain - metabolism
Brain Mapping
Drosophila melanogaster
Drosophila melanogaster - anatomy & histology
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
glomeruli
Imaging, Three-Dimensional
in vitro artifacts
In Vitro Techniques
in vivo neuropil marker
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Nerve Net - anatomy & histology
Nerve Net - metabolism
olfactory system
Transcription Factors - metabolism
title Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20in%20vivo%203D%20atlas%20of%20the%20antennal%20lobe%20of%20Drosophila%20melanogaster&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Grabe,%20Veit&rft.date=2015-02-15&rft.volume=523&rft.issue=3&rft.spage=530&rft.epage=544&rft.pages=530-544&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23697&rft_dat=%3Cproquest_cross%3E3527592331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1636464890&rft_id=info:pmid/25327641&rfr_iscdi=true