Loading…
Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster
ABSTRACT As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, althoug...
Saved in:
Published in: | Journal of comparative neurology (1911) 2015-02, Vol.523 (3), p.530-544 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653 |
---|---|
cites | cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653 |
container_end_page | 544 |
container_issue | 3 |
container_start_page | 530 |
container_title | Journal of comparative neurology (1911) |
container_volume | 523 |
creator | Grabe, Veit Strutz, Antonia Baschwitz, Amelie Hansson, Bill S. Sachse, Silke |
description | ABSTRACT
As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc.
By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils. |
doi_str_mv | 10.1002/cne.23697 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642614679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3527592331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMoOl4WvoAU3Oiimktz0ixlRkdlUBeK4Cak7RmNdpqx6Xh5ezOOuhAEV4HkOx85_0_INqMHjFJ-WDZ4wAVotUR6jGpIdQ5smfTiG0u1BrVG1kN4pJRqLfJVssal4Aoy1iOnA3fvOlsnrkle3ItPxCCxXW1D4sdJ94CJbTpsmgjUvsD55aD1wU8fXG2TCda28fc2dNhukpWxrQNufZ0b5Obk-Lp_mo4uh2f9o1FaSi5VKgVyUSpRFUoWZVlIpiUrK0Cuc85hnGlbqVwjrSqqGGeolaCUCQUAloMUG2Rv4Z22_nmGoTMTF0qs40_Qz4JhkHFgGSj9D1QorSXQuXX3F_roZ21c-5OCDLJc00jtL6gyZhBaHJtp6ya2fTeMmnkTJjZhPpuI7M6XcVZMsPohv6OPwOECeHU1vv9tMv2L429luphwMfC3nwnbPhlQQklzezE0o4G4Euf93NyJD0Rmnbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636464890</pqid></control><display><type>article</type><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><source>Wiley</source><creator>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</creator><creatorcontrib>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</creatorcontrib><description>ABSTRACT
As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc.
By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23697</identifier><identifier>PMID: 25327641</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Animals, Genetically Modified ; Arthropod Antennae - anatomy & histology ; Arthropod Antennae - metabolism ; Brain - anatomy & histology ; Brain - metabolism ; Brain Mapping ; Drosophila melanogaster ; Drosophila melanogaster - anatomy & histology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; glomeruli ; Imaging, Three-Dimensional ; in vitro artifacts ; In Vitro Techniques ; in vivo neuropil marker ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Nerve Net - anatomy & histology ; Nerve Net - metabolism ; olfactory system ; Transcription Factors - metabolism</subject><ispartof>Journal of comparative neurology (1911), 2015-02, Vol.523 (3), p.530-544</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</citedby><cites>FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25327641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabe, Veit</creatorcontrib><creatorcontrib>Strutz, Antonia</creatorcontrib><creatorcontrib>Baschwitz, Amelie</creatorcontrib><creatorcontrib>Hansson, Bill S.</creatorcontrib><creatorcontrib>Sachse, Silke</creatorcontrib><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>ABSTRACT
As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc.
By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Arthropod Antennae - anatomy & histology</subject><subject>Arthropod Antennae - metabolism</subject><subject>Brain - anatomy & histology</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - anatomy & histology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>glomeruli</subject><subject>Imaging, Three-Dimensional</subject><subject>in vitro artifacts</subject><subject>In Vitro Techniques</subject><subject>in vivo neuropil marker</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Nerve Net - anatomy & histology</subject><subject>Nerve Net - metabolism</subject><subject>olfactory system</subject><subject>Transcription Factors - metabolism</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkctKxDAUhoMoOl4WvoAU3Oiimktz0ixlRkdlUBeK4Cak7RmNdpqx6Xh5ezOOuhAEV4HkOx85_0_INqMHjFJ-WDZ4wAVotUR6jGpIdQ5smfTiG0u1BrVG1kN4pJRqLfJVssal4Aoy1iOnA3fvOlsnrkle3ItPxCCxXW1D4sdJ94CJbTpsmgjUvsD55aD1wU8fXG2TCda28fc2dNhukpWxrQNufZ0b5Obk-Lp_mo4uh2f9o1FaSi5VKgVyUSpRFUoWZVlIpiUrK0Cuc85hnGlbqVwjrSqqGGeolaCUCQUAloMUG2Rv4Z22_nmGoTMTF0qs40_Qz4JhkHFgGSj9D1QorSXQuXX3F_roZ21c-5OCDLJc00jtL6gyZhBaHJtp6ya2fTeMmnkTJjZhPpuI7M6XcVZMsPohv6OPwOECeHU1vv9tMv2L429luphwMfC3nwnbPhlQQklzezE0o4G4Euf93NyJD0Rmnbs</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Grabe, Veit</creator><creator>Strutz, Antonia</creator><creator>Baschwitz, Amelie</creator><creator>Hansson, Bill S.</creator><creator>Sachse, Silke</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>20150215</creationdate><title>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</title><author>Grabe, Veit ; Strutz, Antonia ; Baschwitz, Amelie ; Hansson, Bill S. ; Sachse, Silke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Arthropod Antennae - anatomy & histology</topic><topic>Arthropod Antennae - metabolism</topic><topic>Brain - anatomy & histology</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - anatomy & histology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>glomeruli</topic><topic>Imaging, Three-Dimensional</topic><topic>in vitro artifacts</topic><topic>In Vitro Techniques</topic><topic>in vivo neuropil marker</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Nerve Net - anatomy & histology</topic><topic>Nerve Net - metabolism</topic><topic>olfactory system</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabe, Veit</creatorcontrib><creatorcontrib>Strutz, Antonia</creatorcontrib><creatorcontrib>Baschwitz, Amelie</creatorcontrib><creatorcontrib>Hansson, Bill S.</creatorcontrib><creatorcontrib>Sachse, Silke</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabe, Veit</au><au>Strutz, Antonia</au><au>Baschwitz, Amelie</au><au>Hansson, Bill S.</au><au>Sachse, Silke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>523</volume><issue>3</issue><spage>530</spage><epage>544</epage><pages>530-544</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>ABSTRACT
As a model for primary olfactory perception, the antennal lobe (AL) of Drosophila melanogaster is among the most thoroughly investigated and well‐understood neuronal structures. Most studies investigating the functional properties and neuronal wiring of the AL are conducted in vivo, although so far the AL morphology has been mainly analyzed in vitro. Identifying the morphological subunits of the AL—the olfactory glomeruli—is usually done using in vitro AL atlases. However, the dissection and fixation procedure causes not only strong volumetric but also geometrical modifications; the result is unpredictable dislocation and a distortion of the AL glomeruli between the in vitro and in vivo brains. Hence, to characterize these artifacts, which are caused by in vitro processing, and to reliably identify glomeruli for in vivo applications, we generated a transgenic fly that expresses the red fluorescent protein DsRed directly fused to the presynaptic protein n‐synaptobrevin, under the control of the pan‐neuronal promotor elav to label the neuropil in the live animal. Using this fly line, we generated a digital 3D atlas of the live Drosophila AL; this atlas, the first of its kind, provides an excellent geometric match for in vivo studies. We verified the identity of 63% of AL glomeruli by mapping the projections of 34 GAL4‐lines of individual chemosensory receptor genes. Moreover, we characterized the innervation patterns of the two most frequently used GAL4‐lines in olfactory research: Orco‐ and GH146‐GAL4. The new in vivo AL atlas will be accessible online to the neuroscience community. J. Comp. Neurol. 523:530–544, 2015. © 2014 Wiley Periodicals, Inc.
By using a novel transgenic fly line, that enables to selectively visualize the neuropil in the live fly brain, the authors established the first 3D in vivo atlas of the antennal lobe of Drosophila melanogaster and demonstrate that in vitro processing results in unexpected deformations of flexible neuropils.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25327641</pmid><doi>10.1002/cne.23697</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2015-02, Vol.523 (3), p.530-544 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642614679 |
source | Wiley |
subjects | Animals Animals, Genetically Modified Arthropod Antennae - anatomy & histology Arthropod Antennae - metabolism Brain - anatomy & histology Brain - metabolism Brain Mapping Drosophila melanogaster Drosophila melanogaster - anatomy & histology Drosophila Proteins - genetics Drosophila Proteins - metabolism glomeruli Imaging, Three-Dimensional in vitro artifacts In Vitro Techniques in vivo neuropil marker Luminescent Proteins - genetics Luminescent Proteins - metabolism Nerve Net - anatomy & histology Nerve Net - metabolism olfactory system Transcription Factors - metabolism |
title | Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20in%20vivo%203D%20atlas%20of%20the%20antennal%20lobe%20of%20Drosophila%20melanogaster&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Grabe,%20Veit&rft.date=2015-02-15&rft.volume=523&rft.issue=3&rft.spage=530&rft.epage=544&rft.pages=530-544&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23697&rft_dat=%3Cproquest_cross%3E3527592331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5257-53e23c73db75bccb51951cd6e298226f49ad789e0dd07121e97300137666a2653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1636464890&rft_id=info:pmid/25327641&rfr_iscdi=true |