Loading…
Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity
During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2012-04, Vol.74 (2), p.374-383 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693 |
---|---|
cites | cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693 |
container_end_page | 383 |
container_issue | 2 |
container_start_page | 374 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 74 |
creator | van Versendaal, Daniëlle Rajendran, Rajeev Saiepour, M. Hadi Klooster, Jan Smit-Rigter, Laura Sommeijer, Jean-Pierre De Zeeuw, Chris I. Hofer, Sonja B. Heimel, J. Alexander Levelt, Christiaan N. |
description | During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.
► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses
van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses. |
doi_str_mv | 10.1016/j.neuron.2012.03.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642618124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312002784</els_id><sourcerecordid>1010495833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNY7G31H4gE3LiZMd8z2Qjl2o8LLRXUnRAySS5mmEmuSaZw_31zubULF3V1Ns_7HM55AXiPUYsRFp_HNrglxdAShEmLaIswfwVWGMmuYVjK12CFeikaQTp6Cs5yHhHCjEv8BpwSwhnBvVyBX5eTn33QxccA4xZuwm8_-BLTHn7fB73LLsNNhhre6TEmuI7zLgYXyoG9sMtU4L1ZJp3g13jQBOPgt0nn4o0v-7fgZKun7N49zXPw8-ryx_qmub2_3qwvbhvDKS-NZb0VqDNEMGP0YLljg-n6jhpMEEd2ywbKet1RYShmDnUDd5wQZrkUlAlJz8Gno3eX4p_F5aJmn42bJh1cXLLCghGBe0zY_1GEEZO8p7SiH_9Bx7ikUA9RmCPaMyk7Uil2pEyKOSe3VbvkZ532VXWwCTWqY1HqUJRCVNWiauzDk3wZZmefQ3-bqcCXI-Dq4x68Syob7-p_rU_OFGWjf3nDI-z0pFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503849972</pqid></control><display><type>article</type><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</creator><creatorcontrib>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</creatorcontrib><description>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.
► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses
van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.03.015</identifier><identifier>PMID: 22542189</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Animals ; Brain ; Carrier Proteins - genetics ; Cell culture ; Dendritic Spines - metabolism ; Dendritic Spines - ultrastructure ; Dominance, Ocular - physiology ; Electroporation ; Green Fluorescent Proteins - genetics ; In Vitro Techniques ; Luminescent Proteins - genetics ; Membrane Proteins - genetics ; Mice ; Microscopy ; Microscopy, Electron, Transmission ; Neural Inhibition - genetics ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Neurons - ultrastructure ; Proteins ; Sensory Deprivation ; Synapses - physiology ; Synapses - ultrastructure ; Time Factors ; Vesicular Glutamate Transport Protein 2 - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism ; Visual Cortex - cytology ; Visual Pathways - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2012-04, Vol.74 (2), p.374-383</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 26, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</citedby><cites>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22542189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Versendaal, Daniëlle</creatorcontrib><creatorcontrib>Rajendran, Rajeev</creatorcontrib><creatorcontrib>Saiepour, M. Hadi</creatorcontrib><creatorcontrib>Klooster, Jan</creatorcontrib><creatorcontrib>Smit-Rigter, Laura</creatorcontrib><creatorcontrib>Sommeijer, Jean-Pierre</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Hofer, Sonja B.</creatorcontrib><creatorcontrib>Heimel, J. Alexander</creatorcontrib><creatorcontrib>Levelt, Christiaan N.</creatorcontrib><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.
► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses
van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Brain</subject><subject>Carrier Proteins - genetics</subject><subject>Cell culture</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Dominance, Ocular - physiology</subject><subject>Electroporation</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>In Vitro Techniques</subject><subject>Luminescent Proteins - genetics</subject><subject>Membrane Proteins - genetics</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neural Inhibition - genetics</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Proteins</subject><subject>Sensory Deprivation</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time Factors</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><subject>Visual Cortex - cytology</subject><subject>Visual Pathways - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEUhoNY7G31H4gE3LiZMd8z2Qjl2o8LLRXUnRAySS5mmEmuSaZw_31zubULF3V1Ns_7HM55AXiPUYsRFp_HNrglxdAShEmLaIswfwVWGMmuYVjK12CFeikaQTp6Cs5yHhHCjEv8BpwSwhnBvVyBX5eTn33QxccA4xZuwm8_-BLTHn7fB73LLsNNhhre6TEmuI7zLgYXyoG9sMtU4L1ZJp3g13jQBOPgt0nn4o0v-7fgZKun7N49zXPw8-ryx_qmub2_3qwvbhvDKS-NZb0VqDNEMGP0YLljg-n6jhpMEEd2ywbKet1RYShmDnUDd5wQZrkUlAlJz8Gno3eX4p_F5aJmn42bJh1cXLLCghGBe0zY_1GEEZO8p7SiH_9Bx7ikUA9RmCPaMyk7Uil2pEyKOSe3VbvkZ532VXWwCTWqY1HqUJRCVNWiauzDk3wZZmefQ3-bqcCXI-Dq4x68Syob7-p_rU_OFGWjf3nDI-z0pFY</recordid><startdate>20120426</startdate><enddate>20120426</enddate><creator>van Versendaal, Daniëlle</creator><creator>Rajendran, Rajeev</creator><creator>Saiepour, M. Hadi</creator><creator>Klooster, Jan</creator><creator>Smit-Rigter, Laura</creator><creator>Sommeijer, Jean-Pierre</creator><creator>De Zeeuw, Chris I.</creator><creator>Hofer, Sonja B.</creator><creator>Heimel, J. Alexander</creator><creator>Levelt, Christiaan N.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120426</creationdate><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><author>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Brain</topic><topic>Carrier Proteins - genetics</topic><topic>Cell culture</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Dominance, Ocular - physiology</topic><topic>Electroporation</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>In Vitro Techniques</topic><topic>Luminescent Proteins - genetics</topic><topic>Membrane Proteins - genetics</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neural Inhibition - genetics</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Proteins</topic><topic>Sensory Deprivation</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time Factors</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><topic>Visual Cortex - cytology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Versendaal, Daniëlle</creatorcontrib><creatorcontrib>Rajendran, Rajeev</creatorcontrib><creatorcontrib>Saiepour, M. Hadi</creatorcontrib><creatorcontrib>Klooster, Jan</creatorcontrib><creatorcontrib>Smit-Rigter, Laura</creatorcontrib><creatorcontrib>Sommeijer, Jean-Pierre</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Hofer, Sonja B.</creatorcontrib><creatorcontrib>Heimel, J. Alexander</creatorcontrib><creatorcontrib>Levelt, Christiaan N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Versendaal, Daniëlle</au><au>Rajendran, Rajeev</au><au>Saiepour, M. Hadi</au><au>Klooster, Jan</au><au>Smit-Rigter, Laura</au><au>Sommeijer, Jean-Pierre</au><au>De Zeeuw, Chris I.</au><au>Hofer, Sonja B.</au><au>Heimel, J. Alexander</au><au>Levelt, Christiaan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-04-26</date><risdate>2012</risdate><volume>74</volume><issue>2</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.
► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses
van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22542189</pmid><doi>10.1016/j.neuron.2012.03.015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2012-04, Vol.74 (2), p.374-383 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642618124 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Age Factors Animals Brain Carrier Proteins - genetics Cell culture Dendritic Spines - metabolism Dendritic Spines - ultrastructure Dominance, Ocular - physiology Electroporation Green Fluorescent Proteins - genetics In Vitro Techniques Luminescent Proteins - genetics Membrane Proteins - genetics Mice Microscopy Microscopy, Electron, Transmission Neural Inhibition - genetics Neural Inhibition - physiology Neuronal Plasticity - physiology Neurons Neurons - physiology Neurons - ultrastructure Proteins Sensory Deprivation Synapses - physiology Synapses - ultrastructure Time Factors Vesicular Glutamate Transport Protein 2 - metabolism Vesicular Inhibitory Amino Acid Transport Proteins - metabolism Visual Cortex - cytology Visual Pathways - physiology |
title | Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20Inhibitory%20Synapses%20Is%20a%20Major%20Component%20of%20Adult%20Ocular%20Dominance%20Plasticity&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=van%C2%A0Versendaal,%20Dani%C3%ABlle&rft.date=2012-04-26&rft.volume=74&rft.issue=2&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.03.015&rft_dat=%3Cproquest_cross%3E1010495833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503849972&rft_id=info:pmid/22542189&rfr_iscdi=true |