Loading…

Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity

During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2012-04, Vol.74 (2), p.374-383
Main Authors: van Versendaal, Daniëlle, Rajendran, Rajeev, Saiepour, M. Hadi, Klooster, Jan, Smit-Rigter, Laura, Sommeijer, Jean-Pierre, De Zeeuw, Chris I., Hofer, Sonja B., Heimel, J. Alexander, Levelt, Christiaan N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693
cites cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693
container_end_page 383
container_issue 2
container_start_page 374
container_title Neuron (Cambridge, Mass.)
container_volume 74
creator van Versendaal, Daniëlle
Rajendran, Rajeev
Saiepour, M. Hadi
Klooster, Jan
Smit-Rigter, Laura
Sommeijer, Jean-Pierre
De Zeeuw, Chris I.
Hofer, Sonja B.
Heimel, J. Alexander
Levelt, Christiaan N.
description During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry. ► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.
doi_str_mv 10.1016/j.neuron.2012.03.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642618124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627312002784</els_id><sourcerecordid>1010495833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNY7G31H4gE3LiZMd8z2Qjl2o8LLRXUnRAySS5mmEmuSaZw_31zubULF3V1Ns_7HM55AXiPUYsRFp_HNrglxdAShEmLaIswfwVWGMmuYVjK12CFeikaQTp6Cs5yHhHCjEv8BpwSwhnBvVyBX5eTn33QxccA4xZuwm8_-BLTHn7fB73LLsNNhhre6TEmuI7zLgYXyoG9sMtU4L1ZJp3g13jQBOPgt0nn4o0v-7fgZKun7N49zXPw8-ryx_qmub2_3qwvbhvDKS-NZb0VqDNEMGP0YLljg-n6jhpMEEd2ywbKet1RYShmDnUDd5wQZrkUlAlJz8Gno3eX4p_F5aJmn42bJh1cXLLCghGBe0zY_1GEEZO8p7SiH_9Bx7ikUA9RmCPaMyk7Uil2pEyKOSe3VbvkZ532VXWwCTWqY1HqUJRCVNWiauzDk3wZZmefQ3-bqcCXI-Dq4x68Syob7-p_rU_OFGWjf3nDI-z0pFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503849972</pqid></control><display><type>article</type><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</creator><creatorcontrib>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</creatorcontrib><description>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry. ► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2012.03.015</identifier><identifier>PMID: 22542189</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Animals ; Brain ; Carrier Proteins - genetics ; Cell culture ; Dendritic Spines - metabolism ; Dendritic Spines - ultrastructure ; Dominance, Ocular - physiology ; Electroporation ; Green Fluorescent Proteins - genetics ; In Vitro Techniques ; Luminescent Proteins - genetics ; Membrane Proteins - genetics ; Mice ; Microscopy ; Microscopy, Electron, Transmission ; Neural Inhibition - genetics ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Neurons - ultrastructure ; Proteins ; Sensory Deprivation ; Synapses - physiology ; Synapses - ultrastructure ; Time Factors ; Vesicular Glutamate Transport Protein 2 - metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins - metabolism ; Visual Cortex - cytology ; Visual Pathways - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2012-04, Vol.74 (2), p.374-383</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 26, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</citedby><cites>FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22542189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Versendaal, Daniëlle</creatorcontrib><creatorcontrib>Rajendran, Rajeev</creatorcontrib><creatorcontrib>Saiepour, M. Hadi</creatorcontrib><creatorcontrib>Klooster, Jan</creatorcontrib><creatorcontrib>Smit-Rigter, Laura</creatorcontrib><creatorcontrib>Sommeijer, Jean-Pierre</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Hofer, Sonja B.</creatorcontrib><creatorcontrib>Heimel, J. Alexander</creatorcontrib><creatorcontrib>Levelt, Christiaan N.</creatorcontrib><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry. ► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Brain</subject><subject>Carrier Proteins - genetics</subject><subject>Cell culture</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Dominance, Ocular - physiology</subject><subject>Electroporation</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>In Vitro Techniques</subject><subject>Luminescent Proteins - genetics</subject><subject>Membrane Proteins - genetics</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neural Inhibition - genetics</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Proteins</subject><subject>Sensory Deprivation</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time Factors</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><subject>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</subject><subject>Visual Cortex - cytology</subject><subject>Visual Pathways - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEUhoNY7G31H4gE3LiZMd8z2Qjl2o8LLRXUnRAySS5mmEmuSaZw_31zubULF3V1Ns_7HM55AXiPUYsRFp_HNrglxdAShEmLaIswfwVWGMmuYVjK12CFeikaQTp6Cs5yHhHCjEv8BpwSwhnBvVyBX5eTn33QxccA4xZuwm8_-BLTHn7fB73LLsNNhhre6TEmuI7zLgYXyoG9sMtU4L1ZJp3g13jQBOPgt0nn4o0v-7fgZKun7N49zXPw8-ryx_qmub2_3qwvbhvDKS-NZb0VqDNEMGP0YLljg-n6jhpMEEd2ywbKet1RYShmDnUDd5wQZrkUlAlJz8Gno3eX4p_F5aJmn42bJh1cXLLCghGBe0zY_1GEEZO8p7SiH_9Bx7ikUA9RmCPaMyk7Uil2pEyKOSe3VbvkZ532VXWwCTWqY1HqUJRCVNWiauzDk3wZZmefQ3-bqcCXI-Dq4x68Syob7-p_rU_OFGWjf3nDI-z0pFY</recordid><startdate>20120426</startdate><enddate>20120426</enddate><creator>van Versendaal, Daniëlle</creator><creator>Rajendran, Rajeev</creator><creator>Saiepour, M. Hadi</creator><creator>Klooster, Jan</creator><creator>Smit-Rigter, Laura</creator><creator>Sommeijer, Jean-Pierre</creator><creator>De Zeeuw, Chris I.</creator><creator>Hofer, Sonja B.</creator><creator>Heimel, J. Alexander</creator><creator>Levelt, Christiaan N.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120426</creationdate><title>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</title><author>van Versendaal, Daniëlle ; Rajendran, Rajeev ; Saiepour, M. Hadi ; Klooster, Jan ; Smit-Rigter, Laura ; Sommeijer, Jean-Pierre ; De Zeeuw, Chris I. ; Hofer, Sonja B. ; Heimel, J. Alexander ; Levelt, Christiaan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Brain</topic><topic>Carrier Proteins - genetics</topic><topic>Cell culture</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Dominance, Ocular - physiology</topic><topic>Electroporation</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>In Vitro Techniques</topic><topic>Luminescent Proteins - genetics</topic><topic>Membrane Proteins - genetics</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neural Inhibition - genetics</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Proteins</topic><topic>Sensory Deprivation</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time Factors</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><topic>Vesicular Inhibitory Amino Acid Transport Proteins - metabolism</topic><topic>Visual Cortex - cytology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Versendaal, Daniëlle</creatorcontrib><creatorcontrib>Rajendran, Rajeev</creatorcontrib><creatorcontrib>Saiepour, M. Hadi</creatorcontrib><creatorcontrib>Klooster, Jan</creatorcontrib><creatorcontrib>Smit-Rigter, Laura</creatorcontrib><creatorcontrib>Sommeijer, Jean-Pierre</creatorcontrib><creatorcontrib>De Zeeuw, Chris I.</creatorcontrib><creatorcontrib>Hofer, Sonja B.</creatorcontrib><creatorcontrib>Heimel, J. Alexander</creatorcontrib><creatorcontrib>Levelt, Christiaan N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Versendaal, Daniëlle</au><au>Rajendran, Rajeev</au><au>Saiepour, M. Hadi</au><au>Klooster, Jan</au><au>Smit-Rigter, Laura</au><au>Sommeijer, Jean-Pierre</au><au>De Zeeuw, Chris I.</au><au>Hofer, Sonja B.</au><au>Heimel, J. Alexander</au><au>Levelt, Christiaan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2012-04-26</date><risdate>2012</risdate><volume>74</volume><issue>2</issue><spage>374</spage><epage>383</epage><pages>374-383</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of inhibitory synapses onto pyramidal neurons is a major component of plasticity in the adult neocortex. In vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry. ► Plasticity in adult visual cortex is associated with rapid inhibitory synapse loss ► This loss of inhibition is matched by increased visual responsiveness ► Inhibitory synapse loss occurs predominantly on stable dendritic spines ► This may allow adult plasticity despite reduced plasticity of excitatory synapses van Versendaal et al. show that plasticity in the adult visual cortex is associated with the rapid loss of inhibitory synapses. This may represent a mechanism allowing adult plasticity to occur without the need for extensive reorganization of excitatory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22542189</pmid><doi>10.1016/j.neuron.2012.03.015</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2012-04, Vol.74 (2), p.374-383
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1642618124
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Age Factors
Animals
Brain
Carrier Proteins - genetics
Cell culture
Dendritic Spines - metabolism
Dendritic Spines - ultrastructure
Dominance, Ocular - physiology
Electroporation
Green Fluorescent Proteins - genetics
In Vitro Techniques
Luminescent Proteins - genetics
Membrane Proteins - genetics
Mice
Microscopy
Microscopy, Electron, Transmission
Neural Inhibition - genetics
Neural Inhibition - physiology
Neuronal Plasticity - physiology
Neurons
Neurons - physiology
Neurons - ultrastructure
Proteins
Sensory Deprivation
Synapses - physiology
Synapses - ultrastructure
Time Factors
Vesicular Glutamate Transport Protein 2 - metabolism
Vesicular Inhibitory Amino Acid Transport Proteins - metabolism
Visual Cortex - cytology
Visual Pathways - physiology
title Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elimination%20of%20Inhibitory%20Synapses%20Is%20a%20Major%20Component%20of%20Adult%20Ocular%20Dominance%20Plasticity&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=van%C2%A0Versendaal,%20Dani%C3%ABlle&rft.date=2012-04-26&rft.volume=74&rft.issue=2&rft.spage=374&rft.epage=383&rft.pages=374-383&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2012.03.015&rft_dat=%3Cproquest_cross%3E1010495833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-d48d607c264ccabd5e4bc7873c12050df4b348a736c314e07b5e5224d59634693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503849972&rft_id=info:pmid/22542189&rfr_iscdi=true