Loading…
Graphene-CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation
rGO-CdS-H2W12 nanocomposite film was successfully fabricated by a layer-by-layer self-assembly method. The composite film was characterized by techniques such as UV-Vis spectra, XPS, and AFM. The composite film showed high photoelectronic response under the illumination of sunlight. Both current-vol...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2014-12, Vol.16 (47), p.26016-26023 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | rGO-CdS-H2W12 nanocomposite film was successfully fabricated by a layer-by-layer self-assembly method. The composite film was characterized by techniques such as UV-Vis spectra, XPS, and AFM. The composite film showed high photoelectronic response under the illumination of sunlight. Both current-voltage curves and photocurrent transient measurements demonstrated that the photocurrent response of the rGO-CdS-H2W12 composite film was enhanced five-fold compared with CdS film. This can be attributed to the photoinduced electron transfer between CdS, H2W12 and rGO, which promotes the charge separation efficiency of CdS. The introduction of GO enhanced the charge separation and transportation. More importantly, various pollutants can be treated as electron donors, and can thus be degraded and produce hydrogen at the same time, at a low bias voltage under the irradiation of solar light. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c4cp03824j |