Loading…
Left ventricle segmentation by dynamic shape constrained random walks
Accurate and robust extraction of the left ventricle (LV) cavity is a key step for quantitative analysis of cardiac functions. In this study, we propose an improved LV cavity segmentation method that incorporates a dynamic shape constraint into the weighting function of the random walks algorithm. T...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate and robust extraction of the left ventricle (LV) cavity is a key step for quantitative analysis of cardiac functions. In this study, we propose an improved LV cavity segmentation method that incorporates a dynamic shape constraint into the weighting function of the random walks algorithm. The method involves an iterative process that updates an intermediate result to the desired solution. The shape constraint restricts the solution space of the segmentation result, such that the robustness of the algorithm is increased to handle misleading information that emanates from noise, weak boundaries, and clutter. Our experiments on real cardiac magnetic resonance images demonstrate that the proposed method obtains better segmentation performance than standard method. |
---|---|
ISSN: | 1094-687X 1558-4615 2694-0604 |
DOI: | 10.1109/EMBC.2014.6944679 |