Loading…

Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans

AIM: Investigation of antifungal mechanism of phenazine 1‐carboxamide (PC) produced by a Pseudomonas strain MCC2142. METHODS AND RESULTS: An antifungal metabolite produced by a Pseudomonas was purified and identified as PC. Human pathogenic fungi such as Candida albicans, Candida glabrata, Cryptococ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied microbiology 2015, Vol.118 (1), p.39-48
Main Authors: Tupe, S.G, Kulkarni, R.R, Shirazi, F, Sant, D.G, Joshi, S.P, Deshpande, M.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023
cites cdi_FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023
container_end_page 48
container_issue 1
container_start_page 39
container_title Journal of applied microbiology
container_volume 118
creator Tupe, S.G
Kulkarni, R.R
Shirazi, F
Sant, D.G
Joshi, S.P
Deshpande, M.V
description AIM: Investigation of antifungal mechanism of phenazine 1‐carboxamide (PC) produced by a Pseudomonas strain MCC2142. METHODS AND RESULTS: An antifungal metabolite produced by a Pseudomonas was purified and identified as PC. Human pathogenic fungi such as Candida albicans, Candida glabrata, Cryptococcus neoformans, Fusarium oxysporum, Aspergillus fumigatus and Aspergillus niger were found to be inhibited by PC (MIC₉₀32–64 μg ml⁻¹). Addition of PC (20 μg ml⁻¹) during yeast (Y)–hypha (H) transitions inhibited germ tube formation by >90% and >99% in C. albicans National Collection of Industrial Microorganisms (NCIM) 3471 and nonpathogenic model Benjaminiella poitrasii, respectively. After exposure to PC (20 μg ml⁻¹), 75–80% yeast cells of B. poitrasii and C. albicans NCIM 3471 showed rhodamine 123 fluorescence indicating high intracellular reactive oxygen species (ROS) production. ROS further led to hyperpolarization of mitochondrial membrane, subsequently induction of apoptosis as evident by externalization of phosphatidylserine, DNA fragmentation, chromatin condensation and finally death in B. poitrasii. In C. albicans NCIM 3471, PC (20 μg ml⁻¹) induced apoptosis. CONCLUSIONS: The antifungal effect of PC in B. poitrasii and C. albicans may be due to ROS‐mediated apoptotic death. SIGNIFICANCE AND IMPACT OF THE STUDY: Inhibition of Y–H transition of B. poitrasii and C. albicans by PC indicates that it may prove useful in the control of dimorphic human pathogens.
doi_str_mv 10.1111/jam.12675
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1647019103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3525649271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqWw4AXAEhtYZOpL7CTLMqJcVEQl6No6cewZj2I7tRNBWfUReAlejCfB6bQskJDwkeUj6_N_jv27KJ4SvCJ5HO_ArQgVNb9XHBImeJlzev8mr0qOa3pQPEpphzFhmIuHxQHlrGpoiw-Ln-chJdsNGjmttuBtcigYBH6yZvYbGNC41R6-W69_Xf8geSqIXfgGzvYamRgcOk967oMLHhJK4wrBBqxPE-qtC3HcWoUWJYtea58btd7qYQA0BjtFSNbmWj3azg48GmHaho32aJ33bA8Ihs4q8Olx8cDAkPST2_WouDh982X9rjz79Pb9-uSsVBXBvGz7tlK66XHHDAPRqk4zhjVTpmFAMa553bWqqZQQDTO8q3PQjitOK9MyTNlR8XKvO8ZwOes0SWeTWvr1OsxJElHVmLQEs_9AWc15y6oFffEXugtz9PkiCyVwRRrBM_VqT6mYLYnayDFaB_FKEiwXm2V-PXljc2af3SrOndP9H_LO1wwc74GvdtBX_1aSH04-3kk-358wECRsok3y4jPFhOdf0zRCtOw3nlK-lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636041865</pqid></control><display><type>article</type><title>Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans</title><source>Alma/SFX Local Collection</source><creator>Tupe, S.G ; Kulkarni, R.R ; Shirazi, F ; Sant, D.G ; Joshi, S.P ; Deshpande, M.V</creator><creatorcontrib>Tupe, S.G ; Kulkarni, R.R ; Shirazi, F ; Sant, D.G ; Joshi, S.P ; Deshpande, M.V</creatorcontrib><description>AIM: Investigation of antifungal mechanism of phenazine 1‐carboxamide (PC) produced by a Pseudomonas strain MCC2142. METHODS AND RESULTS: An antifungal metabolite produced by a Pseudomonas was purified and identified as PC. Human pathogenic fungi such as Candida albicans, Candida glabrata, Cryptococcus neoformans, Fusarium oxysporum, Aspergillus fumigatus and Aspergillus niger were found to be inhibited by PC (MIC₉₀32–64 μg ml⁻¹). Addition of PC (20 μg ml⁻¹) during yeast (Y)–hypha (H) transitions inhibited germ tube formation by &gt;90% and &gt;99% in C. albicans National Collection of Industrial Microorganisms (NCIM) 3471 and nonpathogenic model Benjaminiella poitrasii, respectively. After exposure to PC (20 μg ml⁻¹), 75–80% yeast cells of B. poitrasii and C. albicans NCIM 3471 showed rhodamine 123 fluorescence indicating high intracellular reactive oxygen species (ROS) production. ROS further led to hyperpolarization of mitochondrial membrane, subsequently induction of apoptosis as evident by externalization of phosphatidylserine, DNA fragmentation, chromatin condensation and finally death in B. poitrasii. In C. albicans NCIM 3471, PC (20 μg ml⁻¹) induced apoptosis. CONCLUSIONS: The antifungal effect of PC in B. poitrasii and C. albicans may be due to ROS‐mediated apoptotic death. SIGNIFICANCE AND IMPACT OF THE STUDY: Inhibition of Y–H transition of B. poitrasii and C. albicans by PC indicates that it may prove useful in the control of dimorphic human pathogens.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.12675</identifier><identifier>PMID: 25348290</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>England: Published for the Society for Applied Bacteriology by Blackwell Science</publisher><subject>Antifungal Agents - pharmacology ; antifungal properties ; Apoptosis ; Aspergillus fumigatus ; Aspergillus niger ; Benjaminiella ; Candida albicans ; Candida albicans - drug effects ; Candida glabrata ; chromatin ; Cryptococcus neoformans ; death ; dimorphism ; DNA fragmentation ; fluorescence ; Fungi ; Fusarium oxysporum ; germ tube ; humans ; metabolites ; Microbiology ; mitochondrial membrane ; Mucorales - drug effects ; Mucorales - metabolism ; Pathogens ; phenazines ; Phenazines - isolation &amp; purification ; Phenazines - pharmacology ; phosphatidylserines ; Pseudomonas ; Pseudomonas - chemistry ; Pseudomonas sp ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; yeasts</subject><ispartof>Journal of applied microbiology, 2015, Vol.118 (1), p.39-48</ispartof><rights>2014 The Society for Applied Microbiology</rights><rights>2014 The Society for Applied Microbiology.</rights><rights>Copyright © 2015 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023</citedby><cites>FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25348290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tupe, S.G</creatorcontrib><creatorcontrib>Kulkarni, R.R</creatorcontrib><creatorcontrib>Shirazi, F</creatorcontrib><creatorcontrib>Sant, D.G</creatorcontrib><creatorcontrib>Joshi, S.P</creatorcontrib><creatorcontrib>Deshpande, M.V</creatorcontrib><title>Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>AIM: Investigation of antifungal mechanism of phenazine 1‐carboxamide (PC) produced by a Pseudomonas strain MCC2142. METHODS AND RESULTS: An antifungal metabolite produced by a Pseudomonas was purified and identified as PC. Human pathogenic fungi such as Candida albicans, Candida glabrata, Cryptococcus neoformans, Fusarium oxysporum, Aspergillus fumigatus and Aspergillus niger were found to be inhibited by PC (MIC₉₀32–64 μg ml⁻¹). Addition of PC (20 μg ml⁻¹) during yeast (Y)–hypha (H) transitions inhibited germ tube formation by &gt;90% and &gt;99% in C. albicans National Collection of Industrial Microorganisms (NCIM) 3471 and nonpathogenic model Benjaminiella poitrasii, respectively. After exposure to PC (20 μg ml⁻¹), 75–80% yeast cells of B. poitrasii and C. albicans NCIM 3471 showed rhodamine 123 fluorescence indicating high intracellular reactive oxygen species (ROS) production. ROS further led to hyperpolarization of mitochondrial membrane, subsequently induction of apoptosis as evident by externalization of phosphatidylserine, DNA fragmentation, chromatin condensation and finally death in B. poitrasii. In C. albicans NCIM 3471, PC (20 μg ml⁻¹) induced apoptosis. CONCLUSIONS: The antifungal effect of PC in B. poitrasii and C. albicans may be due to ROS‐mediated apoptotic death. SIGNIFICANCE AND IMPACT OF THE STUDY: Inhibition of Y–H transition of B. poitrasii and C. albicans by PC indicates that it may prove useful in the control of dimorphic human pathogens.</description><subject>Antifungal Agents - pharmacology</subject><subject>antifungal properties</subject><subject>Apoptosis</subject><subject>Aspergillus fumigatus</subject><subject>Aspergillus niger</subject><subject>Benjaminiella</subject><subject>Candida albicans</subject><subject>Candida albicans - drug effects</subject><subject>Candida glabrata</subject><subject>chromatin</subject><subject>Cryptococcus neoformans</subject><subject>death</subject><subject>dimorphism</subject><subject>DNA fragmentation</subject><subject>fluorescence</subject><subject>Fungi</subject><subject>Fusarium oxysporum</subject><subject>germ tube</subject><subject>humans</subject><subject>metabolites</subject><subject>Microbiology</subject><subject>mitochondrial membrane</subject><subject>Mucorales - drug effects</subject><subject>Mucorales - metabolism</subject><subject>Pathogens</subject><subject>phenazines</subject><subject>Phenazines - isolation &amp; purification</subject><subject>Phenazines - pharmacology</subject><subject>phosphatidylserines</subject><subject>Pseudomonas</subject><subject>Pseudomonas - chemistry</subject><subject>Pseudomonas sp</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>yeasts</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1DAUhiMEoqWw4AXAEhtYZOpL7CTLMqJcVEQl6No6cewZj2I7tRNBWfUReAlejCfB6bQskJDwkeUj6_N_jv27KJ4SvCJ5HO_ArQgVNb9XHBImeJlzev8mr0qOa3pQPEpphzFhmIuHxQHlrGpoiw-Ln-chJdsNGjmttuBtcigYBH6yZvYbGNC41R6-W69_Xf8geSqIXfgGzvYamRgcOk967oMLHhJK4wrBBqxPE-qtC3HcWoUWJYtea58btd7qYQA0BjtFSNbmWj3azg48GmHaho32aJ33bA8Ihs4q8Olx8cDAkPST2_WouDh982X9rjz79Pb9-uSsVBXBvGz7tlK66XHHDAPRqk4zhjVTpmFAMa553bWqqZQQDTO8q3PQjitOK9MyTNlR8XKvO8ZwOes0SWeTWvr1OsxJElHVmLQEs_9AWc15y6oFffEXugtz9PkiCyVwRRrBM_VqT6mYLYnayDFaB_FKEiwXm2V-PXljc2af3SrOndP9H_LO1wwc74GvdtBX_1aSH04-3kk-358wECRsok3y4jPFhOdf0zRCtOw3nlK-lA</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Tupe, S.G</creator><creator>Kulkarni, R.R</creator><creator>Shirazi, F</creator><creator>Sant, D.G</creator><creator>Joshi, S.P</creator><creator>Deshpande, M.V</creator><general>Published for the Society for Applied Bacteriology by Blackwell Science</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2015</creationdate><title>Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans</title><author>Tupe, S.G ; Kulkarni, R.R ; Shirazi, F ; Sant, D.G ; Joshi, S.P ; Deshpande, M.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antifungal Agents - pharmacology</topic><topic>antifungal properties</topic><topic>Apoptosis</topic><topic>Aspergillus fumigatus</topic><topic>Aspergillus niger</topic><topic>Benjaminiella</topic><topic>Candida albicans</topic><topic>Candida albicans - drug effects</topic><topic>Candida glabrata</topic><topic>chromatin</topic><topic>Cryptococcus neoformans</topic><topic>death</topic><topic>dimorphism</topic><topic>DNA fragmentation</topic><topic>fluorescence</topic><topic>Fungi</topic><topic>Fusarium oxysporum</topic><topic>germ tube</topic><topic>humans</topic><topic>metabolites</topic><topic>Microbiology</topic><topic>mitochondrial membrane</topic><topic>Mucorales - drug effects</topic><topic>Mucorales - metabolism</topic><topic>Pathogens</topic><topic>phenazines</topic><topic>Phenazines - isolation &amp; purification</topic><topic>Phenazines - pharmacology</topic><topic>phosphatidylserines</topic><topic>Pseudomonas</topic><topic>Pseudomonas - chemistry</topic><topic>Pseudomonas sp</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tupe, S.G</creatorcontrib><creatorcontrib>Kulkarni, R.R</creatorcontrib><creatorcontrib>Shirazi, F</creatorcontrib><creatorcontrib>Sant, D.G</creatorcontrib><creatorcontrib>Joshi, S.P</creatorcontrib><creatorcontrib>Deshpande, M.V</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tupe, S.G</au><au>Kulkarni, R.R</au><au>Shirazi, F</au><au>Sant, D.G</au><au>Joshi, S.P</au><au>Deshpande, M.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2015</date><risdate>2015</risdate><volume>118</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>AIM: Investigation of antifungal mechanism of phenazine 1‐carboxamide (PC) produced by a Pseudomonas strain MCC2142. METHODS AND RESULTS: An antifungal metabolite produced by a Pseudomonas was purified and identified as PC. Human pathogenic fungi such as Candida albicans, Candida glabrata, Cryptococcus neoformans, Fusarium oxysporum, Aspergillus fumigatus and Aspergillus niger were found to be inhibited by PC (MIC₉₀32–64 μg ml⁻¹). Addition of PC (20 μg ml⁻¹) during yeast (Y)–hypha (H) transitions inhibited germ tube formation by &gt;90% and &gt;99% in C. albicans National Collection of Industrial Microorganisms (NCIM) 3471 and nonpathogenic model Benjaminiella poitrasii, respectively. After exposure to PC (20 μg ml⁻¹), 75–80% yeast cells of B. poitrasii and C. albicans NCIM 3471 showed rhodamine 123 fluorescence indicating high intracellular reactive oxygen species (ROS) production. ROS further led to hyperpolarization of mitochondrial membrane, subsequently induction of apoptosis as evident by externalization of phosphatidylserine, DNA fragmentation, chromatin condensation and finally death in B. poitrasii. In C. albicans NCIM 3471, PC (20 μg ml⁻¹) induced apoptosis. CONCLUSIONS: The antifungal effect of PC in B. poitrasii and C. albicans may be due to ROS‐mediated apoptotic death. SIGNIFICANCE AND IMPACT OF THE STUDY: Inhibition of Y–H transition of B. poitrasii and C. albicans by PC indicates that it may prove useful in the control of dimorphic human pathogens.</abstract><cop>England</cop><pub>Published for the Society for Applied Bacteriology by Blackwell Science</pub><pmid>25348290</pmid><doi>10.1111/jam.12675</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2015, Vol.118 (1), p.39-48
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_1647019103
source Alma/SFX Local Collection
subjects Antifungal Agents - pharmacology
antifungal properties
Apoptosis
Aspergillus fumigatus
Aspergillus niger
Benjaminiella
Candida albicans
Candida albicans - drug effects
Candida glabrata
chromatin
Cryptococcus neoformans
death
dimorphism
DNA fragmentation
fluorescence
Fungi
Fusarium oxysporum
germ tube
humans
metabolites
Microbiology
mitochondrial membrane
Mucorales - drug effects
Mucorales - metabolism
Pathogens
phenazines
Phenazines - isolation & purification
Phenazines - pharmacology
phosphatidylserines
Pseudomonas
Pseudomonas - chemistry
Pseudomonas sp
reactive oxygen species
Reactive Oxygen Species - metabolism
yeasts
title Possible mechanism of antifungal phenazine‐1‐carboxamide from Pseudomonas sp. against dimorphic fungi Benjaminiella poitrasii and human pathogen Candida albicans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20mechanism%20of%20antifungal%20phenazine%E2%80%901%E2%80%90carboxamide%20from%20Pseudomonas%20sp.%20against%20dimorphic%20fungi%20Benjaminiella%20poitrasii%20and%20human%20pathogen%20Candida%20albicans&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Tupe,%20S.G&rft.date=2015&rft.volume=118&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/jam.12675&rft_dat=%3Cproquest_cross%3E3525649271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4105-9d94ce8d0b3f3a69cbe330e3cf83a200757b9c84c6683f5b7b7b2b5c524f93023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1636041865&rft_id=info:pmid/25348290&rfr_iscdi=true