Loading…

Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally

Abstract Crossmodal integration of sensory signals can improve perception and behavior but requires the signals to occur close in time. Differences in propagation and processing speeds make this difficult. Temporal recalibration is a useful ‘re-alignment’ process by which the point of subjective syn...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2014-10, Vol.1585, p.120-130
Main Authors: Harvey, Craig, Van der Burg, Erik, Alais, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Crossmodal integration of sensory signals can improve perception and behavior but requires the signals to occur close in time. Differences in propagation and processing speeds make this difficult. Temporal recalibration is a useful ‘re-alignment’ process by which the point of subjective synchrony is temporally realigned towards an adapted asynchrony. A recent study by Van der Burg et al. (2013) . J. Neurosci. 33, 14633–14637 showed temporal recalibration can occur rapidly following a single exposure to a brief audiovisual asynchrony. Using a similar procedure, this study confirms their rapid recalibration effect and shows that it occurs even when the single exposure differs in its auditory and visual features from the test stimulus. Using the same procedure in a unimodal context showed that rapid recalibration does not occur in audition following exposure to asynchronous tones of different frequencies, nor in vision following asynchronous lines differing in colour and orientation. This pattern of results suggests that rapid recalibration is in essence an inter-sensory temporal process. It serves to realign asynchronies between modalities with no selectivity for feature identity and does not operate within modalities.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2014.08.028