Loading…

Color video denoising using epitome and sparse coding

•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2015-02, Vol.42 (2), p.751-759
Main Authors: Lee, Hwea Yee, Hoo, Wai Lam, Chan, Chee Seng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3
cites cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3
container_end_page 759
container_issue 2
container_start_page 751
container_title Expert systems with applications
container_volume 42
creator Lee, Hwea Yee
Hoo, Wai Lam
Chan, Chee Seng
description •A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem. Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.
doi_str_mv 10.1016/j.eswa.2014.08.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651373573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414005156</els_id><sourcerecordid>1651373573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</originalsourceid><addsrcrecordid>eNp9kD1PxDAMhiMEEsfBH2DqyNLi1E3SSCzoxJd0EgvMUUhclFOvKUkPxL-nxzGz2IPfx5Yfxi45VBy4vN5UlL9sVQNvKmgrQDxiC94qLKXSeMwWoIUqG66aU3aW8waAKwC1YGIV-5iKz-ApFp6GGHIY3ovdb6UxTHFLhR18kUebMhUu-nlyzk4622e6-OtL9np_97J6LNfPD0-r23XpEHEqSWnZOGkFat4I3nlNWuJ8t65b3VnvqetaIUG2WvK2tmjfamiBo2wABDpcsqvD3jHFjx3lyWxDdtT3dqC4y4ZLwVGhUDhH60PUpZhzos6MKWxt-jYczN6R2Zi9I7N3ZKA1s6MZujlAND_xGSiZ7AINjnxI5CbjY_gP_wE5nW3z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651373573</pqid></control><display><type>article</type><title>Color video denoising using epitome and sparse coding</title><source>ScienceDirect Freedom Collection</source><creator>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</creator><creatorcontrib>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</creatorcontrib><description>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome &amp; Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem. Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.08.033</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coding ; Color ; Dictionaries ; Expert systems ; Noise reduction ; Representations ; Sparse coding ; Tasks ; Video denoising ; Video epitome ; Visual</subject><ispartof>Expert systems with applications, 2015-02, Vol.42 (2), p.751-759</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</citedby><cites>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Hwea Yee</creatorcontrib><creatorcontrib>Hoo, Wai Lam</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><title>Color video denoising using epitome and sparse coding</title><title>Expert systems with applications</title><description>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome &amp; Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem. Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</description><subject>Coding</subject><subject>Color</subject><subject>Dictionaries</subject><subject>Expert systems</subject><subject>Noise reduction</subject><subject>Representations</subject><subject>Sparse coding</subject><subject>Tasks</subject><subject>Video denoising</subject><subject>Video epitome</subject><subject>Visual</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PxDAMhiMEEsfBH2DqyNLi1E3SSCzoxJd0EgvMUUhclFOvKUkPxL-nxzGz2IPfx5Yfxi45VBy4vN5UlL9sVQNvKmgrQDxiC94qLKXSeMwWoIUqG66aU3aW8waAKwC1YGIV-5iKz-ApFp6GGHIY3ovdb6UxTHFLhR18kUebMhUu-nlyzk4622e6-OtL9np_97J6LNfPD0-r23XpEHEqSWnZOGkFat4I3nlNWuJ8t65b3VnvqetaIUG2WvK2tmjfamiBo2wABDpcsqvD3jHFjx3lyWxDdtT3dqC4y4ZLwVGhUDhH60PUpZhzos6MKWxt-jYczN6R2Zi9I7N3ZKA1s6MZujlAND_xGSiZ7AINjnxI5CbjY_gP_wE5nW3z</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Lee, Hwea Yee</creator><creator>Hoo, Wai Lam</creator><creator>Chan, Chee Seng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Color video denoising using epitome and sparse coding</title><author>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coding</topic><topic>Color</topic><topic>Dictionaries</topic><topic>Expert systems</topic><topic>Noise reduction</topic><topic>Representations</topic><topic>Sparse coding</topic><topic>Tasks</topic><topic>Video denoising</topic><topic>Video epitome</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hwea Yee</creatorcontrib><creatorcontrib>Hoo, Wai Lam</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hwea Yee</au><au>Hoo, Wai Lam</au><au>Chan, Chee Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color video denoising using epitome and sparse coding</atitle><jtitle>Expert systems with applications</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>42</volume><issue>2</issue><spage>751</spage><epage>759</epage><pages>751-759</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome &amp; Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem. Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.08.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2015-02, Vol.42 (2), p.751-759
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1651373573
source ScienceDirect Freedom Collection
subjects Coding
Color
Dictionaries
Expert systems
Noise reduction
Representations
Sparse coding
Tasks
Video denoising
Video epitome
Visual
title Color video denoising using epitome and sparse coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20video%20denoising%20using%20epitome%20and%20sparse%20coding&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lee,%20Hwea%20Yee&rft.date=2015-02-01&rft.volume=42&rft.issue=2&rft.spage=751&rft.epage=759&rft.pages=751-759&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.08.033&rft_dat=%3Cproquest_cross%3E1651373573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651373573&rft_id=info:pmid/&rfr_iscdi=true