Loading…
Color video denoising using epitome and sparse coding
•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to...
Saved in:
Published in: | Expert systems with applications 2015-02, Vol.42 (2), p.751-759 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3 |
container_end_page | 759 |
container_issue | 2 |
container_start_page | 751 |
container_title | Expert systems with applications |
container_volume | 42 |
creator | Lee, Hwea Yee Hoo, Wai Lam Chan, Chee Seng |
description | •A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem.
Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task. |
doi_str_mv | 10.1016/j.eswa.2014.08.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651373573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414005156</els_id><sourcerecordid>1651373573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</originalsourceid><addsrcrecordid>eNp9kD1PxDAMhiMEEsfBH2DqyNLi1E3SSCzoxJd0EgvMUUhclFOvKUkPxL-nxzGz2IPfx5Yfxi45VBy4vN5UlL9sVQNvKmgrQDxiC94qLKXSeMwWoIUqG66aU3aW8waAKwC1YGIV-5iKz-ApFp6GGHIY3ovdb6UxTHFLhR18kUebMhUu-nlyzk4622e6-OtL9np_97J6LNfPD0-r23XpEHEqSWnZOGkFat4I3nlNWuJ8t65b3VnvqetaIUG2WvK2tmjfamiBo2wABDpcsqvD3jHFjx3lyWxDdtT3dqC4y4ZLwVGhUDhH60PUpZhzos6MKWxt-jYczN6R2Zi9I7N3ZKA1s6MZujlAND_xGSiZ7AINjnxI5CbjY_gP_wE5nW3z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651373573</pqid></control><display><type>article</type><title>Color video denoising using epitome and sparse coding</title><source>ScienceDirect Freedom Collection</source><creator>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</creator><creatorcontrib>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</creatorcontrib><description>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem.
Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.08.033</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coding ; Color ; Dictionaries ; Expert systems ; Noise reduction ; Representations ; Sparse coding ; Tasks ; Video denoising ; Video epitome ; Visual</subject><ispartof>Expert systems with applications, 2015-02, Vol.42 (2), p.751-759</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</citedby><cites>FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Hwea Yee</creatorcontrib><creatorcontrib>Hoo, Wai Lam</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><title>Color video denoising using epitome and sparse coding</title><title>Expert systems with applications</title><description>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem.
Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</description><subject>Coding</subject><subject>Color</subject><subject>Dictionaries</subject><subject>Expert systems</subject><subject>Noise reduction</subject><subject>Representations</subject><subject>Sparse coding</subject><subject>Tasks</subject><subject>Video denoising</subject><subject>Video epitome</subject><subject>Visual</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PxDAMhiMEEsfBH2DqyNLi1E3SSCzoxJd0EgvMUUhclFOvKUkPxL-nxzGz2IPfx5Yfxi45VBy4vN5UlL9sVQNvKmgrQDxiC94qLKXSeMwWoIUqG66aU3aW8waAKwC1YGIV-5iKz-ApFp6GGHIY3ovdb6UxTHFLhR18kUebMhUu-nlyzk4622e6-OtL9np_97J6LNfPD0-r23XpEHEqSWnZOGkFat4I3nlNWuJ8t65b3VnvqetaIUG2WvK2tmjfamiBo2wABDpcsqvD3jHFjx3lyWxDdtT3dqC4y4ZLwVGhUDhH60PUpZhzos6MKWxt-jYczN6R2Zi9I7N3ZKA1s6MZujlAND_xGSiZ7AINjnxI5CbjY_gP_wE5nW3z</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Lee, Hwea Yee</creator><creator>Hoo, Wai Lam</creator><creator>Chan, Chee Seng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Color video denoising using epitome and sparse coding</title><author>Lee, Hwea Yee ; Hoo, Wai Lam ; Chan, Chee Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coding</topic><topic>Color</topic><topic>Dictionaries</topic><topic>Expert systems</topic><topic>Noise reduction</topic><topic>Representations</topic><topic>Sparse coding</topic><topic>Tasks</topic><topic>Video denoising</topic><topic>Video epitome</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hwea Yee</creatorcontrib><creatorcontrib>Hoo, Wai Lam</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hwea Yee</au><au>Hoo, Wai Lam</au><au>Chan, Chee Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color video denoising using epitome and sparse coding</atitle><jtitle>Expert systems with applications</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>42</volume><issue>2</issue><spage>751</spage><epage>759</epage><pages>751-759</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A good denoising method is vital as it able to enhance the performance of next processes.•This paper extends the Benoit et al. work from monocular image to color video domain.•VESC (Video Epitome & Sparse Coding) framework is proposed for the video denoising task.•We show comparable results to conventional methods in both spatial and transform domain.•We also demonstrate the strength of the proposed method in visual tracking problem.
Denoising is a process that remove noise from a signal. In this paper, we present a unified framework to deal with video denoising problems by adopting a two-steps process, namely the video epitome and sparse coding. First, the video epitome will summarize the video contents and remove the redundancy information to generate a single compact representation to describe the video content. Second, employing the single compact representation as an input, the sparse coding will generate a visual dictionary for the video sequence by estimating the most representative basis elements. The fusion of these two methods have resulted an enhanced, compact representation for the denoising task. Experiments on the publicly available datasets have shown the effectiveness of our proposed system in comparison to the state-of-the-art algorithms in the video denoising task.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.08.033</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2015-02, Vol.42 (2), p.751-759 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651373573 |
source | ScienceDirect Freedom Collection |
subjects | Coding Color Dictionaries Expert systems Noise reduction Representations Sparse coding Tasks Video denoising Video epitome Visual |
title | Color video denoising using epitome and sparse coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20video%20denoising%20using%20epitome%20and%20sparse%20coding&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Lee,%20Hwea%20Yee&rft.date=2015-02-01&rft.volume=42&rft.issue=2&rft.spage=751&rft.epage=759&rft.pages=751-759&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.08.033&rft_dat=%3Cproquest_cross%3E1651373573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-e7964c6a5391451fd9e9630072289faddeff85606896182a3ab208013640053c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651373573&rft_id=info:pmid/&rfr_iscdi=true |