Loading…

Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine

Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics 2015-01, Vol.92 (1), p.59-76
Main Authors: D'Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193
cites cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193
container_end_page 76
container_issue 1
container_start_page 59
container_title International journal of computer mathematics
container_volume 92
creator D'Amore, L.
Laccetti, G.
Romano, D.
Scotti, G.
Murli, A.
description Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the L-BFGS , the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the L-BFGS algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.
doi_str_mv 10.1080/00207160.2014.899589
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651375596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3554651531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</originalsourceid><addsrcrecordid>eNp9kEFrGzEUhEVIoY6bf9CDIJdc1nna1WqlXoLr1HbB0ELts3jRavGaXcmVdmP87yvj5tJDTw_mfTMMQ8hnBjMGEp4AcqiYgFkOjM-kUqVUN2TCIFcZ5KK8JZMLkl2Yj-QuxgMASFWJCam3_oShjhTpEQN2ne2o8f3RO-sG2rqkr37ussXuZU6te2uDd336fEm6wWhpHMb6TE_tsKfD3tJN9nW5-kXXGE6262jw49A6-4l8aLCL9v7vnZLd8tt2sc42P1bfF_NNZnghh-xVNLVqOGOoCkCsRGVUwRTk2CiByGtohFClkQqZyWvJFLfCSoa2qFnJVDElj9fcY_C_RxsH3bfRpCLorB-jZqJkRVWWSiT04R_04MfgUrtEcc5lJSQkil8pE3yMwTb6GNoew1kz0Jfp9fv0-jK9vk6fbM9XW-saH3o8-dDVesBz50MT0Jk26uK_CX8AyVSIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644487680</pqid></control><display><type>article</type><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</creator><creatorcontrib>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</creatorcontrib><description>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the L-BFGS , the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the L-BFGS algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160.2014.899589</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; Central processing units ; Codes ; Computer programming ; Computer programs ; CPUs ; Data assimilation ; Developers ; GPU computing ; Graphics processing units ; Guidelines ; L-BFGS routine ; Mathematical models ; mathematical software ; Optimization algorithms ; parallel computing ; Parallel processing ; Routines ; Software engineering</subject><ispartof>International journal of computer mathematics, 2015-01, Vol.92 (1), p.59-76</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</citedby><cites>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Romano, D.</creatorcontrib><creatorcontrib>Scotti, G.</creatorcontrib><creatorcontrib>Murli, A.</creatorcontrib><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><title>International journal of computer mathematics</title><description>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the L-BFGS , the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the L-BFGS algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</description><subject>Algorithms</subject><subject>Central processing units</subject><subject>Codes</subject><subject>Computer programming</subject><subject>Computer programs</subject><subject>CPUs</subject><subject>Data assimilation</subject><subject>Developers</subject><subject>GPU computing</subject><subject>Graphics processing units</subject><subject>Guidelines</subject><subject>L-BFGS routine</subject><subject>Mathematical models</subject><subject>mathematical software</subject><subject>Optimization algorithms</subject><subject>parallel computing</subject><subject>Parallel processing</subject><subject>Routines</subject><subject>Software engineering</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEUhEVIoY6bf9CDIJdc1nna1WqlXoLr1HbB0ELts3jRavGaXcmVdmP87yvj5tJDTw_mfTMMQ8hnBjMGEp4AcqiYgFkOjM-kUqVUN2TCIFcZ5KK8JZMLkl2Yj-QuxgMASFWJCam3_oShjhTpEQN2ne2o8f3RO-sG2rqkr37ussXuZU6te2uDd336fEm6wWhpHMb6TE_tsKfD3tJN9nW5-kXXGE6262jw49A6-4l8aLCL9v7vnZLd8tt2sc42P1bfF_NNZnghh-xVNLVqOGOoCkCsRGVUwRTk2CiByGtohFClkQqZyWvJFLfCSoa2qFnJVDElj9fcY_C_RxsH3bfRpCLorB-jZqJkRVWWSiT04R_04MfgUrtEcc5lJSQkil8pE3yMwTb6GNoew1kz0Jfp9fv0-jK9vk6fbM9XW-saH3o8-dDVesBz50MT0Jk26uK_CX8AyVSIMQ</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>D'Amore, L.</creator><creator>Laccetti, G.</creator><creator>Romano, D.</creator><creator>Scotti, G.</creator><creator>Murli, A.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150102</creationdate><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><author>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Central processing units</topic><topic>Codes</topic><topic>Computer programming</topic><topic>Computer programs</topic><topic>CPUs</topic><topic>Data assimilation</topic><topic>Developers</topic><topic>GPU computing</topic><topic>Graphics processing units</topic><topic>Guidelines</topic><topic>L-BFGS routine</topic><topic>Mathematical models</topic><topic>mathematical software</topic><topic>Optimization algorithms</topic><topic>parallel computing</topic><topic>Parallel processing</topic><topic>Routines</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Romano, D.</creatorcontrib><creatorcontrib>Scotti, G.</creatorcontrib><creatorcontrib>Murli, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Amore, L.</au><au>Laccetti, G.</au><au>Romano, D.</au><au>Scotti, G.</au><au>Murli, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</atitle><jtitle>International journal of computer mathematics</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>92</volume><issue>1</issue><spage>59</spage><epage>76</epage><pages>59-76</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the L-BFGS , the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the L-BFGS algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207160.2014.899589</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7160
ispartof International journal of computer mathematics, 2015-01, Vol.92 (1), p.59-76
issn 0020-7160
1029-0265
language eng
recordid cdi_proquest_miscellaneous_1651375596
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Algorithms
Central processing units
Codes
Computer programming
Computer programs
CPUs
Data assimilation
Developers
GPU computing
Graphics processing units
Guidelines
L-BFGS routine
Mathematical models
mathematical software
Optimization algorithms
parallel computing
Parallel processing
Routines
Software engineering
title Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20parallel%20component%20in%20a%20GPU-CUDA%20environment:%20a%20case%20study%20with%20the%20L-BFGS%20Harwell%20routine&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=D'Amore,%20L.&rft.date=2015-01-02&rft.volume=92&rft.issue=1&rft.spage=59&rft.epage=76&rft.pages=59-76&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207160.2014.899589&rft_dat=%3Cproquest_cross%3E3554651531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1644487680&rft_id=info:pmid/&rfr_iscdi=true