Loading…
Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine
Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the t...
Saved in:
Published in: | International journal of computer mathematics 2015-01, Vol.92 (1), p.59-76 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193 |
container_end_page | 76 |
container_issue | 1 |
container_start_page | 59 |
container_title | International journal of computer mathematics |
container_volume | 92 |
creator | D'Amore, L. Laccetti, G. Romano, D. Scotti, G. Murli, A. |
description | Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the
L-BFGS
, the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the
L-BFGS
algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working. |
doi_str_mv | 10.1080/00207160.2014.899589 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651375596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3554651531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</originalsourceid><addsrcrecordid>eNp9kEFrGzEUhEVIoY6bf9CDIJdc1nna1WqlXoLr1HbB0ELts3jRavGaXcmVdmP87yvj5tJDTw_mfTMMQ8hnBjMGEp4AcqiYgFkOjM-kUqVUN2TCIFcZ5KK8JZMLkl2Yj-QuxgMASFWJCam3_oShjhTpEQN2ne2o8f3RO-sG2rqkr37ussXuZU6te2uDd336fEm6wWhpHMb6TE_tsKfD3tJN9nW5-kXXGE6262jw49A6-4l8aLCL9v7vnZLd8tt2sc42P1bfF_NNZnghh-xVNLVqOGOoCkCsRGVUwRTk2CiByGtohFClkQqZyWvJFLfCSoa2qFnJVDElj9fcY_C_RxsH3bfRpCLorB-jZqJkRVWWSiT04R_04MfgUrtEcc5lJSQkil8pE3yMwTb6GNoew1kz0Jfp9fv0-jK9vk6fbM9XW-saH3o8-dDVesBz50MT0Jk26uK_CX8AyVSIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644487680</pqid></control><display><type>article</type><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</creator><creatorcontrib>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</creatorcontrib><description>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the
L-BFGS
, the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the
L-BFGS
algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160.2014.899589</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; Central processing units ; Codes ; Computer programming ; Computer programs ; CPUs ; Data assimilation ; Developers ; GPU computing ; Graphics processing units ; Guidelines ; L-BFGS routine ; Mathematical models ; mathematical software ; Optimization algorithms ; parallel computing ; Parallel processing ; Routines ; Software engineering</subject><ispartof>International journal of computer mathematics, 2015-01, Vol.92 (1), p.59-76</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</citedby><cites>FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Romano, D.</creatorcontrib><creatorcontrib>Scotti, G.</creatorcontrib><creatorcontrib>Murli, A.</creatorcontrib><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><title>International journal of computer mathematics</title><description>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the
L-BFGS
, the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the
L-BFGS
algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</description><subject>Algorithms</subject><subject>Central processing units</subject><subject>Codes</subject><subject>Computer programming</subject><subject>Computer programs</subject><subject>CPUs</subject><subject>Data assimilation</subject><subject>Developers</subject><subject>GPU computing</subject><subject>Graphics processing units</subject><subject>Guidelines</subject><subject>L-BFGS routine</subject><subject>Mathematical models</subject><subject>mathematical software</subject><subject>Optimization algorithms</subject><subject>parallel computing</subject><subject>Parallel processing</subject><subject>Routines</subject><subject>Software engineering</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEUhEVIoY6bf9CDIJdc1nna1WqlXoLr1HbB0ELts3jRavGaXcmVdmP87yvj5tJDTw_mfTMMQ8hnBjMGEp4AcqiYgFkOjM-kUqVUN2TCIFcZ5KK8JZMLkl2Yj-QuxgMASFWJCam3_oShjhTpEQN2ne2o8f3RO-sG2rqkr37ussXuZU6te2uDd336fEm6wWhpHMb6TE_tsKfD3tJN9nW5-kXXGE6262jw49A6-4l8aLCL9v7vnZLd8tt2sc42P1bfF_NNZnghh-xVNLVqOGOoCkCsRGVUwRTk2CiByGtohFClkQqZyWvJFLfCSoa2qFnJVDElj9fcY_C_RxsH3bfRpCLorB-jZqJkRVWWSiT04R_04MfgUrtEcc5lJSQkil8pE3yMwTb6GNoew1kz0Jfp9fv0-jK9vk6fbM9XW-saH3o8-dDVesBz50MT0Jk26uK_CX8AyVSIMQ</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>D'Amore, L.</creator><creator>Laccetti, G.</creator><creator>Romano, D.</creator><creator>Scotti, G.</creator><creator>Murli, A.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150102</creationdate><title>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</title><author>D'Amore, L. ; Laccetti, G. ; Romano, D. ; Scotti, G. ; Murli, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Central processing units</topic><topic>Codes</topic><topic>Computer programming</topic><topic>Computer programs</topic><topic>CPUs</topic><topic>Data assimilation</topic><topic>Developers</topic><topic>GPU computing</topic><topic>Graphics processing units</topic><topic>Guidelines</topic><topic>L-BFGS routine</topic><topic>Mathematical models</topic><topic>mathematical software</topic><topic>Optimization algorithms</topic><topic>parallel computing</topic><topic>Parallel processing</topic><topic>Routines</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Amore, L.</creatorcontrib><creatorcontrib>Laccetti, G.</creatorcontrib><creatorcontrib>Romano, D.</creatorcontrib><creatorcontrib>Scotti, G.</creatorcontrib><creatorcontrib>Murli, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Amore, L.</au><au>Laccetti, G.</au><au>Romano, D.</au><au>Scotti, G.</au><au>Murli, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine</atitle><jtitle>International journal of computer mathematics</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>92</volume><issue>1</issue><spage>59</spage><epage>76</epage><pages>59-76</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>Modern graphics processing units (GPUs) have been at the leading edge of increasing parallelism over the last 10 years. This fact has encouraged the use of GPUs in a broader range of applications, where developers are required to lever age this technology with new programming models which ease the task of writing programs to run efficiently on GPUs. In this paper, we discuss the main guidelines to assist the developer when porting sequential scientific code on modern GPUs. These guidelines were carried out by porting the
L-BFGS
, the (Limited memory-) BFGS algorithm for large scale optimization, available as Harwell routine VA15. The specific interest in the
L-BFGS
algorithm arises from the fact that this is the computational module with the longest running time of a Oceanographic Data Assimilation application software, on which some of the authors are working.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00207160.2014.899589</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7160 |
ispartof | International journal of computer mathematics, 2015-01, Vol.92 (1), p.59-76 |
issn | 0020-7160 1029-0265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651375596 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Algorithms Central processing units Codes Computer programming Computer programs CPUs Data assimilation Developers GPU computing Graphics processing units Guidelines L-BFGS routine Mathematical models mathematical software Optimization algorithms parallel computing Parallel processing Routines Software engineering |
title | Towards a parallel component in a GPU-CUDA environment: a case study with the L-BFGS Harwell routine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20parallel%20component%20in%20a%20GPU-CUDA%20environment:%20a%20case%20study%20with%20the%20L-BFGS%20Harwell%20routine&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=D'Amore,%20L.&rft.date=2015-01-02&rft.volume=92&rft.issue=1&rft.spage=59&rft.epage=76&rft.pages=59-76&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207160.2014.899589&rft_dat=%3Cproquest_cross%3E3554651531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-b6fd9f411a930aa767c931902af96aa4d0f6695c89a1c2d8194e6e81ae3d15193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1644487680&rft_id=info:pmid/&rfr_iscdi=true |