Loading…

VEGF-releasing suture material for enhancement of vascularization: Development, in vitro and in vivo study

[Display omitted] As it has been demonstrated that bioactive substances can be delivered locally using coated surgical suture materials, the authors developed a vascular endothelial growth factor (VEGF)-releasing suture material that should promote vascularization and potentially wound healing. In t...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2014-12, Vol.10 (12), p.5081-5089
Main Authors: Bigalke, Christian, Luderer, Frank, Wulf, Katharina, Storm, Thilo, Löbler, Marian, Arbeiter, Daniela, Rau, Bettina M., Nizze, Horst, Vollmar, Brigitte, Schmitz, Klaus-Peter, Klar, Ernst, Sternberg, Katrin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] As it has been demonstrated that bioactive substances can be delivered locally using coated surgical suture materials, the authors developed a vascular endothelial growth factor (VEGF)-releasing suture material that should promote vascularization and potentially wound healing. In this context, the study focused on the characterization of the developed suture material and the verification of its biological activity, as well as establishing a coating process that allows reproducible and stable coating of a commercially available polydioxanone suture material with poly(l-lactide) (PLLA) and 0.1μg and 1.0μg VEGF. The in vitro VEGF release kinetics was studied using a Sandwich ELISA. The biological activity of the released VEGF was investigated in vitro using human umbilical vein endothelial cells. The potential of the VEGF-releasing suture material was also studied in vivo 5days after implantation in the hind limb of Wistar rats, when the histological findings were analyzed. The essential results, enhanced cell viability in vitro as well as significantly increased vascularization in vivo, were achieved using PLLA/1.0μg VEGF-coated suture material. Furthermore, ELISA measurements revealed a high reproducibility of the VEGF release behavior. Based on the results achieved regarding the dose–effect relationship of VEGF, the stability during its processing and the release behavior, it can be predicted that a bioactive suture material would be successful in later in vivo studies. Therefore, this knowledge could be the basis for future studies, where bioactive substances with different modes of action are combined for targeted, overall enhancement of wound healing.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2014.09.002