Loading…

Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps

This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanenc...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2014-12, Vol.249, p.53-66
Main Authors: Wu, Ruihua, Zou, Xiaoling, Wang, Ke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3
cites cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3
container_end_page 66
container_issue
container_start_page 53
container_title Applied mathematics and computation
container_volume 249
creator Wu, Ruihua
Zou, Xiaoling
Wang, Ke
description This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.
doi_str_mv 10.1016/j.amc.2014.10.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651380379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031401409X</els_id><sourcerecordid>1651380379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGwZWRLOseMkYqoqKIhKLDBbtnNRHSVNsF1QNt6BN-RJSFRmptPd_f_pv4-QawoJBSpum0R1JkmB8qlPgLMTsqBFzuJM8PKULABKETMAdk4uvG8AIBeUL8jzyo_dEPpgTTS4fkAXLPqoryMferNTfl7sRu1sFW1sO9j9z9f3alStivzoA3bRpw27qDl0g78kZ7VqPV791SV5e7h_XT_G25fN03q1jQ1jEGLKNSDlSleggJWKZSzDtKxzzbQoRZ4qZkTBUKTIi6LUAJk2XGc0NbVArtmS3BzvToHfD-iD7Kw32LZqj_3BSyoyygpgeTlJ6VFqXO-9w1oOznbKjZKCnMHJRk7g5AxuHk3gJs_d0YPTDx8WnfTG4t5gZR2aIKve_uP-BaKEdz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651380379</pqid></control><display><type>article</type><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><creator>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</creator><creatorcontrib>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</creatorcontrib><description>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.10.043</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asymptotic properties ; Dynamic tests ; Dynamical systems ; Dynamics ; Extinction ; Gilpin–Ayala model ; Jumps ; Markov chain ; Mathematical models ; Stochastic permanence ; Stochasticity ; Switching</subject><ispartof>Applied mathematics and computation, 2014-12, Vol.249, p.53-66</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</citedby><cites>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630031401409X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27922,27923,45970,46001</link.rule.ids></links><search><creatorcontrib>Wu, Ruihua</creatorcontrib><creatorcontrib>Zou, Xiaoling</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><title>Applied mathematics and computation</title><description>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</description><subject>Asymptotic properties</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Extinction</subject><subject>Gilpin–Ayala model</subject><subject>Jumps</subject><subject>Markov chain</subject><subject>Mathematical models</subject><subject>Stochastic permanence</subject><subject>Stochasticity</subject><subject>Switching</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGwZWRLOseMkYqoqKIhKLDBbtnNRHSVNsF1QNt6BN-RJSFRmptPd_f_pv4-QawoJBSpum0R1JkmB8qlPgLMTsqBFzuJM8PKULABKETMAdk4uvG8AIBeUL8jzyo_dEPpgTTS4fkAXLPqoryMferNTfl7sRu1sFW1sO9j9z9f3alStivzoA3bRpw27qDl0g78kZ7VqPV791SV5e7h_XT_G25fN03q1jQ1jEGLKNSDlSleggJWKZSzDtKxzzbQoRZ4qZkTBUKTIi6LUAJk2XGc0NbVArtmS3BzvToHfD-iD7Kw32LZqj_3BSyoyygpgeTlJ6VFqXO-9w1oOznbKjZKCnMHJRk7g5AxuHk3gJs_d0YPTDx8WnfTG4t5gZR2aIKve_uP-BaKEdz0</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Wu, Ruihua</creator><creator>Zou, Xiaoling</creator><creator>Wang, Ke</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141215</creationdate><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><author>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Extinction</topic><topic>Gilpin–Ayala model</topic><topic>Jumps</topic><topic>Markov chain</topic><topic>Mathematical models</topic><topic>Stochastic permanence</topic><topic>Stochasticity</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ruihua</creatorcontrib><creatorcontrib>Zou, Xiaoling</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ruihua</au><au>Zou, Xiaoling</au><au>Wang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>249</volume><spage>53</spage><epage>66</epage><pages>53-66</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.10.043</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-12, Vol.249, p.53-66
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1651380379
source ScienceDirect: Mathematics Backfile; ScienceDirect Journals
subjects Asymptotic properties
Dynamic tests
Dynamical systems
Dynamics
Extinction
Gilpin–Ayala model
Jumps
Markov chain
Mathematical models
Stochastic permanence
Stochasticity
Switching
title Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20stochastic%20hybrid%20Gilpin%E2%80%93Ayala%20system%20with%20jumps&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wu,%20Ruihua&rft.date=2014-12-15&rft.volume=249&rft.spage=53&rft.epage=66&rft.pages=53-66&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.10.043&rft_dat=%3Cproquest_cross%3E1651380379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651380379&rft_id=info:pmid/&rfr_iscdi=true