Loading…
Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps
This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanenc...
Saved in:
Published in: | Applied mathematics and computation 2014-12, Vol.249, p.53-66 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3 |
container_end_page | 66 |
container_issue | |
container_start_page | 53 |
container_title | Applied mathematics and computation |
container_volume | 249 |
creator | Wu, Ruihua Zou, Xiaoling Wang, Ke |
description | This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain. |
doi_str_mv | 10.1016/j.amc.2014.10.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651380379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031401409X</els_id><sourcerecordid>1651380379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGwZWRLOseMkYqoqKIhKLDBbtnNRHSVNsF1QNt6BN-RJSFRmptPd_f_pv4-QawoJBSpum0R1JkmB8qlPgLMTsqBFzuJM8PKULABKETMAdk4uvG8AIBeUL8jzyo_dEPpgTTS4fkAXLPqoryMferNTfl7sRu1sFW1sO9j9z9f3alStivzoA3bRpw27qDl0g78kZ7VqPV791SV5e7h_XT_G25fN03q1jQ1jEGLKNSDlSleggJWKZSzDtKxzzbQoRZ4qZkTBUKTIi6LUAJk2XGc0NbVArtmS3BzvToHfD-iD7Kw32LZqj_3BSyoyygpgeTlJ6VFqXO-9w1oOznbKjZKCnMHJRk7g5AxuHk3gJs_d0YPTDx8WnfTG4t5gZR2aIKve_uP-BaKEdz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651380379</pqid></control><display><type>article</type><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><creator>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</creator><creatorcontrib>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</creatorcontrib><description>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.10.043</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asymptotic properties ; Dynamic tests ; Dynamical systems ; Dynamics ; Extinction ; Gilpin–Ayala model ; Jumps ; Markov chain ; Mathematical models ; Stochastic permanence ; Stochasticity ; Switching</subject><ispartof>Applied mathematics and computation, 2014-12, Vol.249, p.53-66</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</citedby><cites>FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009630031401409X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3562,27922,27923,45970,46001</link.rule.ids></links><search><creatorcontrib>Wu, Ruihua</creatorcontrib><creatorcontrib>Zou, Xiaoling</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><title>Applied mathematics and computation</title><description>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</description><subject>Asymptotic properties</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Extinction</subject><subject>Gilpin–Ayala model</subject><subject>Jumps</subject><subject>Markov chain</subject><subject>Mathematical models</subject><subject>Stochastic permanence</subject><subject>Stochasticity</subject><subject>Switching</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGwZWRLOseMkYqoqKIhKLDBbtnNRHSVNsF1QNt6BN-RJSFRmptPd_f_pv4-QawoJBSpum0R1JkmB8qlPgLMTsqBFzuJM8PKULABKETMAdk4uvG8AIBeUL8jzyo_dEPpgTTS4fkAXLPqoryMferNTfl7sRu1sFW1sO9j9z9f3alStivzoA3bRpw27qDl0g78kZ7VqPV791SV5e7h_XT_G25fN03q1jQ1jEGLKNSDlSleggJWKZSzDtKxzzbQoRZ4qZkTBUKTIi6LUAJk2XGc0NbVArtmS3BzvToHfD-iD7Kw32LZqj_3BSyoyygpgeTlJ6VFqXO-9w1oOznbKjZKCnMHJRk7g5AxuHk3gJs_d0YPTDx8WnfTG4t5gZR2aIKve_uP-BaKEdz0</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Wu, Ruihua</creator><creator>Zou, Xiaoling</creator><creator>Wang, Ke</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141215</creationdate><title>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</title><author>Wu, Ruihua ; Zou, Xiaoling ; Wang, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Extinction</topic><topic>Gilpin–Ayala model</topic><topic>Jumps</topic><topic>Markov chain</topic><topic>Mathematical models</topic><topic>Stochastic permanence</topic><topic>Stochasticity</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ruihua</creatorcontrib><creatorcontrib>Zou, Xiaoling</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ruihua</au><au>Zou, Xiaoling</au><au>Wang, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>249</volume><spage>53</spage><epage>66</epage><pages>53-66</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper focuses on studying the dynamics of the stochastic Gilpin–Ayala model under regime switching with jumps. The aim is to analyze what happens under the perturbations of regime switching and jumps. Some asymptotic properties are investigated and sufficient conditions for stochastic permanence, extinction, non-persistence in the mean and weak persistence are provided. The critical value among the extinction, non-persistence in the mean and weak persistence is obtained. Our results demonstrate that the dynamics of the model have close relations with the jumps and the stationary distribution of the Markov chain.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.10.043</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-12, Vol.249, p.53-66 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651380379 |
source | ScienceDirect: Mathematics Backfile; ScienceDirect Journals |
subjects | Asymptotic properties Dynamic tests Dynamical systems Dynamics Extinction Gilpin–Ayala model Jumps Markov chain Mathematical models Stochastic permanence Stochasticity Switching |
title | Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20stochastic%20hybrid%20Gilpin%E2%80%93Ayala%20system%20with%20jumps&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wu,%20Ruihua&rft.date=2014-12-15&rft.volume=249&rft.spage=53&rft.epage=66&rft.pages=53-66&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.10.043&rft_dat=%3Cproquest_cross%3E1651380379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-14b0e14abd0a039a3535e29f7b3b69672a3c683e62e4889b005bc4b512cf6e4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651380379&rft_id=info:pmid/&rfr_iscdi=true |