Loading…

Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River, South Korea

A radial collector well is used for the extraction of a large amount of groundwater without causing a deep drawdown at the well’s center, and it is appropriate for the supply of municipal water through riverbank filtration (RBF). Flow path changes caused by water extraction through a radial collecto...

Full description

Saved in:
Bibliographic Details
Published in:Hydrogeology journal 2012-05, Vol.20 (3), p.575-589
Main Authors: Lee, Eunhee, Hyun, Yunjung, Lee, Kang-Kun, Shin, Jiyoun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A radial collector well is used for the extraction of a large amount of groundwater without causing a deep drawdown at the well’s center, and it is appropriate for the supply of municipal water through riverbank filtration (RBF). Flow path changes caused by water extraction through a radial collector well were simulated to estimate the amount of river water induction at a RBF site associated with Nakdong River in South Korea. The structure of the screened horizontal arms of a radial collector well was examined with respect to effective riverbank filtration. The relative ratio of the river water induced to the radial collector well compared to the total groundwater extraction was estimated to be 27–52%. The amount of induced river water varies with the distance of a horizontal arm from the river, indicating that the location and structure of the collector well is significant for RBF. In all simulation cases, the maximum drawdown of the groundwater level near the collector well was 2.1 m, which is not significant considering the substantial pumping rate at the study site. It was concluded that RBF radial collector wells can be used at the study site for a sustainable water supply.
ISSN:1431-2174
1435-0157
DOI:10.1007/s10040-011-0821-3