Loading…

Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature

Coarse-grained Mg in the as-cast condition and fine-grained Mg in the extruded condition were processed by high pressure torsion (HPT) at room temperature for up to 16 turns. Microstructure observation and texture analysis indicate that to fulfil the Von Mises criterion, the non-basal slip is activa...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-12, Vol.619, p.95-106
Main Authors: Qiao, Xiao Guang, Zhao, Ya Wei, Gan, Wei Min, Chen, Ying, Zheng, Ming Yi, Wu, Kun, Gao, Nong, Starink, Marco J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coarse-grained Mg in the as-cast condition and fine-grained Mg in the extruded condition were processed by high pressure torsion (HPT) at room temperature for up to 16 turns. Microstructure observation and texture analysis indicate that to fulfil the Von Mises criterion, the non-basal slip is activated in the as-cast Mg and tension twinning is activated in the as-extruded Mg. Although the deformation mechanism is different in the as-cast Mg and the as-extruded Mg during HPT, their hardening evolutions are similar, i.e. after 1/8 turn of HPT, microhardness of the as-cast Mg and the extruded Mg both show a significant increase and further HPT processing does not significantly further increase the microhardness. Texture strengthening can explain the rapid hardening. Hardness anisotropy and texture data results suggest that texture strengthening plays an important role for both types of samples. Texture strengthening weakens with decreasing grain size.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2014.09.068