Loading…

A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel

A Cr-Mn austenitic steel was tensile strained in the temperature range 273 K (0 °C) ≤ T ≤ 473 K (200 °C), to improve the understanding on the role of stacking fault energy (SFE) on the deformation behavior, associated microstructure, and mechanical properties of low-SFE alloys. The failed specimens...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1937-1952
Main Authors: Barman, H., Hamada, A. S., Sahu, T., Mahato, B., Talonen, J., Shee, S. K., Sahu, P., Porter, D. A., Karjalainen, L. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83
cites cdi_FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83
container_end_page 1952
container_issue 4
container_start_page 1937
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 45
creator Barman, H.
Hamada, A. S.
Sahu, T.
Mahato, B.
Talonen, J.
Shee, S. K.
Sahu, P.
Porter, D. A.
Karjalainen, L. P.
description A Cr-Mn austenitic steel was tensile strained in the temperature range 273 K (0 °C) ≤ T ≤ 473 K (200 °C), to improve the understanding on the role of stacking fault energy (SFE) on the deformation behavior, associated microstructure, and mechanical properties of low-SFE alloys. The failed specimens were studied using X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The SFE of the steel was estimated to vary between ~ 10 to 40 mJ/m 2 at the lowest and highest deformation temperatures, respectively. At the ambient temperatures, the deformation involved martensite transformation ( i.e ., the TRIP effect), moderate deformation-induced twinning, and extended dislocations with wide stacking faults (SFs). The corresponding SF probability of austenite was very high (~10 −2 ). Deformation twinning was most prevalent at 323 K (50 °C), also resulting in the highest uniform elongation at this temperature. Above 323 K (50 °C), the TRIP effect was suppressed and the incidence of twinning decreased due to increasing SFE. At elevated temperatures, fine nano-sized SF ribbons were observed and the SF probability decreased by an order (~10 −3 ). High dislocation densities (~10 15  m −2 ) in austenite were estimated in the entire deformation temperature range. Dislocations had an increasingly screw character up to 323 K (50 °C), thereafter becoming mainly edge. The estimated dislocation and twin densities were found to explain approximately the measured flow stress on the basis of the Taylor equation.
doi_str_mv 10.1007/s11661-013-2175-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651392135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651392135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83</originalsourceid><addsrcrecordid>eNp1kdFrFDEQxoMoWE__AN8CIviyNbPZJJvH82yt0NKC7XNIs7PX1L3kTLLF9s3_3BxXShF8moH5zTff8BHyHtghMKY-ZwApoWHAmxaUaB5ekAMQHW9Ad-xl7ZnijZAtf03e5HzLGAPN5QH5s6Q_inU_fVjTYztPhR4FTOt7eoEpb9EVf4fUhxJpuUF6Fbz97e1ELzFkPyH9imNMG1t8DPQL3tg7HxO1YaBn3qWYS5pdmRPSOFJLV6k5C3Q554LBF-_qZcTpLXk12inju8e6IFfHR5erk-b0_Nv31fK0cVzpUv8AbV3HlXR66HjHB8XY4IRT0LphHDst5HVvrcbeMTHq3jqlr7mTsu1aNvR8QT7tdbcp_poxF7Px2eE02YBxzgakAK5b4KKiH_5Bb-OcQnVnQADjSshqYEFgT-0-zQlHs01-Y9O9AWZ2oZh9KKaGYnahmIe68_FR2WZnpzHZ4Hx-Wmx73ne9kpVr91yuo7DG9MzBf8X_At__nNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510375634</pqid></control><display><type>article</type><title>A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel</title><source>Springer Link</source><creator>Barman, H. ; Hamada, A. S. ; Sahu, T. ; Mahato, B. ; Talonen, J. ; Shee, S. K. ; Sahu, P. ; Porter, D. A. ; Karjalainen, L. P.</creator><creatorcontrib>Barman, H. ; Hamada, A. S. ; Sahu, T. ; Mahato, B. ; Talonen, J. ; Shee, S. K. ; Sahu, P. ; Porter, D. A. ; Karjalainen, L. P.</creatorcontrib><description>A Cr-Mn austenitic steel was tensile strained in the temperature range 273 K (0 °C) ≤ T ≤ 473 K (200 °C), to improve the understanding on the role of stacking fault energy (SFE) on the deformation behavior, associated microstructure, and mechanical properties of low-SFE alloys. The failed specimens were studied using X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The SFE of the steel was estimated to vary between ~ 10 to 40 mJ/m 2 at the lowest and highest deformation temperatures, respectively. At the ambient temperatures, the deformation involved martensite transformation ( i.e ., the TRIP effect), moderate deformation-induced twinning, and extended dislocations with wide stacking faults (SFs). The corresponding SF probability of austenite was very high (~10 −2 ). Deformation twinning was most prevalent at 323 K (50 °C), also resulting in the highest uniform elongation at this temperature. Above 323 K (50 °C), the TRIP effect was suppressed and the incidence of twinning decreased due to increasing SFE. At elevated temperatures, fine nano-sized SF ribbons were observed and the SF probability decreased by an order (~10 −3 ). High dislocation densities (~10 15  m −2 ) in austenite were estimated in the entire deformation temperature range. Dislocations had an increasingly screw character up to 323 K (50 °C), thereafter becoming mainly edge. The estimated dislocation and twin densities were found to explain approximately the measured flow stress on the basis of the Taylor equation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-2175-z</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Austenitic stainless steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Deformation ; Density ; Dislocations ; Exact sciences and technology ; Materials Science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Microstructure ; Nanotechnology ; Stacking fault energy ; Steels ; Structural Materials ; Surfaces and Interfaces ; Tensile strength ; Thin Films ; Twinning</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1937-1952</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83</citedby><cites>FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28384876$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barman, H.</creatorcontrib><creatorcontrib>Hamada, A. S.</creatorcontrib><creatorcontrib>Sahu, T.</creatorcontrib><creatorcontrib>Mahato, B.</creatorcontrib><creatorcontrib>Talonen, J.</creatorcontrib><creatorcontrib>Shee, S. K.</creatorcontrib><creatorcontrib>Sahu, P.</creatorcontrib><creatorcontrib>Porter, D. A.</creatorcontrib><creatorcontrib>Karjalainen, L. P.</creatorcontrib><title>A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>A Cr-Mn austenitic steel was tensile strained in the temperature range 273 K (0 °C) ≤ T ≤ 473 K (200 °C), to improve the understanding on the role of stacking fault energy (SFE) on the deformation behavior, associated microstructure, and mechanical properties of low-SFE alloys. The failed specimens were studied using X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The SFE of the steel was estimated to vary between ~ 10 to 40 mJ/m 2 at the lowest and highest deformation temperatures, respectively. At the ambient temperatures, the deformation involved martensite transformation ( i.e ., the TRIP effect), moderate deformation-induced twinning, and extended dislocations with wide stacking faults (SFs). The corresponding SF probability of austenite was very high (~10 −2 ). Deformation twinning was most prevalent at 323 K (50 °C), also resulting in the highest uniform elongation at this temperature. Above 323 K (50 °C), the TRIP effect was suppressed and the incidence of twinning decreased due to increasing SFE. At elevated temperatures, fine nano-sized SF ribbons were observed and the SF probability decreased by an order (~10 −3 ). High dislocation densities (~10 15  m −2 ) in austenite were estimated in the entire deformation temperature range. Dislocations had an increasingly screw character up to 323 K (50 °C), thereafter becoming mainly edge. The estimated dislocation and twin densities were found to explain approximately the measured flow stress on the basis of the Taylor equation.</description><subject>Applied sciences</subject><subject>Austenitic stainless steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Deformation</subject><subject>Density</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Stacking fault energy</subject><subject>Steels</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strength</subject><subject>Thin Films</subject><subject>Twinning</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kdFrFDEQxoMoWE__AN8CIviyNbPZJJvH82yt0NKC7XNIs7PX1L3kTLLF9s3_3BxXShF8moH5zTff8BHyHtghMKY-ZwApoWHAmxaUaB5ekAMQHW9Ad-xl7ZnijZAtf03e5HzLGAPN5QH5s6Q_inU_fVjTYztPhR4FTOt7eoEpb9EVf4fUhxJpuUF6Fbz97e1ELzFkPyH9imNMG1t8DPQL3tg7HxO1YaBn3qWYS5pdmRPSOFJLV6k5C3Q554LBF-_qZcTpLXk12inju8e6IFfHR5erk-b0_Nv31fK0cVzpUv8AbV3HlXR66HjHB8XY4IRT0LphHDst5HVvrcbeMTHq3jqlr7mTsu1aNvR8QT7tdbcp_poxF7Px2eE02YBxzgakAK5b4KKiH_5Bb-OcQnVnQADjSshqYEFgT-0-zQlHs01-Y9O9AWZ2oZh9KKaGYnahmIe68_FR2WZnpzHZ4Hx-Wmx73ne9kpVr91yuo7DG9MzBf8X_At__nNk</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Barman, H.</creator><creator>Hamada, A. S.</creator><creator>Sahu, T.</creator><creator>Mahato, B.</creator><creator>Talonen, J.</creator><creator>Shee, S. K.</creator><creator>Sahu, P.</creator><creator>Porter, D. A.</creator><creator>Karjalainen, L. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20140401</creationdate><title>A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel</title><author>Barman, H. ; Hamada, A. S. ; Sahu, T. ; Mahato, B. ; Talonen, J. ; Shee, S. K. ; Sahu, P. ; Porter, D. A. ; Karjalainen, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Austenitic stainless steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Deformation</topic><topic>Density</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Stacking fault energy</topic><topic>Steels</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strength</topic><topic>Thin Films</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barman, H.</creatorcontrib><creatorcontrib>Hamada, A. S.</creatorcontrib><creatorcontrib>Sahu, T.</creatorcontrib><creatorcontrib>Mahato, B.</creatorcontrib><creatorcontrib>Talonen, J.</creatorcontrib><creatorcontrib>Shee, S. K.</creatorcontrib><creatorcontrib>Sahu, P.</creatorcontrib><creatorcontrib>Porter, D. A.</creatorcontrib><creatorcontrib>Karjalainen, L. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barman, H.</au><au>Hamada, A. S.</au><au>Sahu, T.</au><au>Mahato, B.</au><au>Talonen, J.</au><au>Shee, S. K.</au><au>Sahu, P.</au><au>Porter, D. A.</au><au>Karjalainen, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>45</volume><issue>4</issue><spage>1937</spage><epage>1952</epage><pages>1937-1952</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>A Cr-Mn austenitic steel was tensile strained in the temperature range 273 K (0 °C) ≤ T ≤ 473 K (200 °C), to improve the understanding on the role of stacking fault energy (SFE) on the deformation behavior, associated microstructure, and mechanical properties of low-SFE alloys. The failed specimens were studied using X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The SFE of the steel was estimated to vary between ~ 10 to 40 mJ/m 2 at the lowest and highest deformation temperatures, respectively. At the ambient temperatures, the deformation involved martensite transformation ( i.e ., the TRIP effect), moderate deformation-induced twinning, and extended dislocations with wide stacking faults (SFs). The corresponding SF probability of austenite was very high (~10 −2 ). Deformation twinning was most prevalent at 323 K (50 °C), also resulting in the highest uniform elongation at this temperature. Above 323 K (50 °C), the TRIP effect was suppressed and the incidence of twinning decreased due to increasing SFE. At elevated temperatures, fine nano-sized SF ribbons were observed and the SF probability decreased by an order (~10 −3 ). High dislocation densities (~10 15  m −2 ) in austenite were estimated in the entire deformation temperature range. Dislocations had an increasingly screw character up to 323 K (50 °C), thereafter becoming mainly edge. The estimated dislocation and twin densities were found to explain approximately the measured flow stress on the basis of the Taylor equation.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-2175-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.1937-1952
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1651392135
source Springer Link
subjects Applied sciences
Austenitic stainless steel
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Deformation
Density
Dislocations
Exact sciences and technology
Materials Science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic Materials
Metallurgy
Metals. Metallurgy
Microstructure
Nanotechnology
Stacking fault energy
Steels
Structural Materials
Surfaces and Interfaces
Tensile strength
Thin Films
Twinning
title A Stacking Fault Energy Perspective into the Uniaxial Tensile Deformation Behavior and Microstructure of a Cr-Mn Austenitic Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stacking%20Fault%20Energy%20Perspective%20into%20the%20Uniaxial%20Tensile%20Deformation%20Behavior%20and%20Microstructure%20of%20a%20Cr-Mn%20Austenitic%20Steel&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Barman,%20H.&rft.date=2014-04-01&rft.volume=45&rft.issue=4&rft.spage=1937&rft.epage=1952&rft.pages=1937-1952&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-2175-z&rft_dat=%3Cproquest_cross%3E1651392135%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-1919ac4376c9d4343d700dc5c712cdff4956b8aa9e8c05f98ac79b3c662420d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1510375634&rft_id=info:pmid/&rfr_iscdi=true