Loading…

The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys

The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measuremen...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-08, Vol.45 (9), p.3800-3805
Main Authors: Kerkove, Marcel A., Wood, Thomas D., Sanders, Paul G., Kampe, Stephen L., Swenson, Douglas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93
cites cdi_FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93
container_end_page 3805
container_issue 9
container_start_page 3800
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 45
creator Kerkove, Marcel A.
Wood, Thomas D.
Sanders, Paul G.
Kampe, Stephen L.
Swenson, Douglas
description The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be D m 2 / s = 2.34 ± 2.16 × 10 - 4 m 2 / s exp - 167 ± 6 kJ / mol R T . Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression D m 2 / s = 2.65 ± 0.84 × 10 - 4 m 2 / s exp - 168 ± 2 kJ / mol R T . In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.
doi_str_mv 10.1007/s11661-014-2275-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651393244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651393244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLcFEbxEM_nazbHUjwoFD9ZzSLOJpuxm62b30H9vypYigqcZeJ95GN4suwZ8DxgXDxFACEAYGCKk4IidZBPgjCKQDJ-mHRcUcUHoeXYR4wZjDJKKSbZYfdn80Ts3RN-GfN5a57zxNvR56_J3o0Plhyb3IUH10Nt8Vg-ND0ODjtmsrttdvMzOnK6jvTrMafbx_LSaL9Dy7eV1Plsiw5jsEa20lISJNRBMeOkMFVYYywoLlGtTVaA1J4D5WoArmQZOQcpKVyVYy6yk0-xu9G679nuwsVeNj8bWtQ62HaICwYFKShhL6M0fdNMOXUjfqaQtOYCEIlEwUqZrY-ysU9vON7rbKcBq360au1WpW7XvVu3NtwezjkbXrtPB-Hg8JKXAUlCcODJyMUXh03a_PvhX_gNXKocv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1538511917</pqid></control><display><type>article</type><title>The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys</title><source>Springer Nature</source><creator>Kerkove, Marcel A. ; Wood, Thomas D. ; Sanders, Paul G. ; Kampe, Stephen L. ; Swenson, Douglas</creator><creatorcontrib>Kerkove, Marcel A. ; Wood, Thomas D. ; Sanders, Paul G. ; Kampe, Stephen L. ; Swenson, Douglas</creatorcontrib><description>The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be D m 2 / s = 2.34 ± 2.16 × 10 - 4 m 2 / s exp - 167 ± 6 kJ / mol R T . Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression D m 2 / s = 2.65 ± 0.84 × 10 - 4 m 2 / s exp - 168 ± 2 kJ / mol R T . In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-014-2275-4</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion ; Diffusion coefficient ; Dilution ; Exact sciences and technology ; Materials Science ; Mathematical analysis ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Scandium ; Standard error ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-08, Vol.45 (9), p.3800-3805</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93</citedby><cites>FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28609630$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerkove, Marcel A.</creatorcontrib><creatorcontrib>Wood, Thomas D.</creatorcontrib><creatorcontrib>Sanders, Paul G.</creatorcontrib><creatorcontrib>Kampe, Stephen L.</creatorcontrib><creatorcontrib>Swenson, Douglas</creatorcontrib><title>The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be D m 2 / s = 2.34 ± 2.16 × 10 - 4 m 2 / s exp - 167 ± 6 kJ / mol R T . Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression D m 2 / s = 2.65 ± 0.84 × 10 - 4 m 2 / s exp - 168 ± 2 kJ / mol R T . In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Dilution</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Scandium</subject><subject>Standard error</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLcFEbxEM_nazbHUjwoFD9ZzSLOJpuxm62b30H9vypYigqcZeJ95GN4suwZ8DxgXDxFACEAYGCKk4IidZBPgjCKQDJ-mHRcUcUHoeXYR4wZjDJKKSbZYfdn80Ts3RN-GfN5a57zxNvR56_J3o0Plhyb3IUH10Nt8Vg-ND0ODjtmsrttdvMzOnK6jvTrMafbx_LSaL9Dy7eV1Plsiw5jsEa20lISJNRBMeOkMFVYYywoLlGtTVaA1J4D5WoArmQZOQcpKVyVYy6yk0-xu9G679nuwsVeNj8bWtQ62HaICwYFKShhL6M0fdNMOXUjfqaQtOYCEIlEwUqZrY-ysU9vON7rbKcBq360au1WpW7XvVu3NtwezjkbXrtPB-Hg8JKXAUlCcODJyMUXh03a_PvhX_gNXKocv</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kerkove, Marcel A.</creator><creator>Wood, Thomas D.</creator><creator>Sanders, Paul G.</creator><creator>Kampe, Stephen L.</creator><creator>Swenson, Douglas</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20140801</creationdate><title>The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys</title><author>Kerkove, Marcel A. ; Wood, Thomas D. ; Sanders, Paul G. ; Kampe, Stephen L. ; Swenson, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Dilution</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Scandium</topic><topic>Standard error</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerkove, Marcel A.</creatorcontrib><creatorcontrib>Wood, Thomas D.</creatorcontrib><creatorcontrib>Sanders, Paul G.</creatorcontrib><creatorcontrib>Kampe, Stephen L.</creatorcontrib><creatorcontrib>Swenson, Douglas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerkove, Marcel A.</au><au>Wood, Thomas D.</au><au>Sanders, Paul G.</au><au>Kampe, Stephen L.</au><au>Swenson, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>45</volume><issue>9</issue><spage>3800</spage><epage>3805</epage><pages>3800-3805</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The diffusion coefficient of Sc in dilute Al-Sc alloys has been determined at 748 K, 823 K, and 898 K (475 °C, 550 °C, and 625 °C, respectively) using semi-infinite diffusion couples. Good agreement was found between the results of the present study and both the higher temperature, direct measurements and lower temperature, indirect measurements of these coefficients reported previously in the literature. The temperature-dependent diffusion coefficient equation derived from the data obtained in the present investigation was found to be D m 2 / s = 2.34 ± 2.16 × 10 - 4 m 2 / s exp - 167 ± 6 kJ / mol R T . Combining these results with data from the literature and fitting all data simultaneously to an Arrhenius relationship yielded the expression D m 2 / s = 2.65 ± 0.84 × 10 - 4 m 2 / s exp - 168 ± 2 kJ / mol R T . In each equation given above, R is 0.0083144 kJ/mol K, T is in Kelvin, and the uncertainties are ±1 standard error.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-014-2275-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2014-08, Vol.45 (9), p.3800-3805
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1651393244
source Springer Nature
subjects Alloys
Aluminum base alloys
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion
Diffusion coefficient
Dilution
Exact sciences and technology
Materials Science
Mathematical analysis
Metallic Materials
Metallurgy
Metals. Metallurgy
Nanotechnology
Scandium
Standard error
Structural Materials
Surfaces and Interfaces
Thin Films
title The Diffusion Coefficient of Scandium in Dilute Aluminum-Scandium Alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Diffusion%20Coefficient%20of%20Scandium%20in%20Dilute%20Aluminum-Scandium%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Kerkove,%20Marcel%20A.&rft.date=2014-08-01&rft.volume=45&rft.issue=9&rft.spage=3800&rft.epage=3805&rft.pages=3800-3805&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-014-2275-4&rft_dat=%3Cproquest_cross%3E1651393244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-3da99246b120258fc36e6ce47e135acdd1aa52105b61f84a153199dad81ee4e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1538511917&rft_id=info:pmid/&rfr_iscdi=true