Loading…

Survey of High-Temperature Reliability of Power Electronics Packaging Components

In order to take the full advantage of the high-temperature SiC and GaN operating devices, package materials able to withstand high-temperature storage and large thermal cycles have been investigated. The temperature under consideration here are higher than 200 °C. Such temperatures are required for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2015-05, Vol.30 (5), p.2456-2464
Main Authors: Khazaka, R., Mendizabal, L., Henry, D., Hanna, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to take the full advantage of the high-temperature SiC and GaN operating devices, package materials able to withstand high-temperature storage and large thermal cycles have been investigated. The temperature under consideration here are higher than 200 °C. Such temperatures are required for several potential applications such as down-hole oil and gas industry for well logging, aircrafts, automotive, and space exploration. This review focuses on the reliability of a selection of potential components or materials used in the package assembly as the substrates, the die attaches, the interconnections, and the encapsulation materials. It reveals that, substrates with low coefficient of thermal expansion (CTE) conductors or with higher fracture resistant ceramics are potential candidates for high temperatures. Die attaches and interconnections reliable solutions are also available with the use of compatible metallization schemes. At this level, the reliability can also be improved by reducing the CTE mismatch between assembled materials. The encapsulation remains the most limiting packaging component since hard materials present thermomechanical reliability issues, while soft materials have low degradation temperatures. The review allows identifying reliable components and materials for high-temperature wide bandgap semiconductors and is expected to be very useful for researchers working for the development on high-temperature electronics.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2014.2357836