Loading…
Approximate representations for multi-robot control policies that maximize mutual information
We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations asso...
Saved in:
Published in: | Autonomous robots 2014-12, Vol.37 (4), p.383-400 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703 |
container_end_page | 400 |
container_issue | 4 |
container_start_page | 383 |
container_title | Autonomous robots |
container_volume | 37 |
creator | Charrow, Benjamin Kumar, Vijay Michael, Nathan |
description | We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations associated with such policies scale poorly with the number of robots, the time horizon associated with the policy, and typical non-parametric representations of the belief, we design approximate representations that enable real-time operation. The main contributions of this paper include the control policy, an algorithm for approximating the belief state, and an extensive study of the performance of these algorithms using simulations and real world experiments in complex, indoor environments. |
doi_str_mv | 10.1007/s10514-014-9411-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651396734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3467757461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8BL16qk7RpNsdl8QsWvOhRQtJOtUvb1CQF9debtR5E8BDmkOd5mXkJOWNwyQDkVWAgWJFBeqpgLON7ZMGEzDMpuNwnC1BcZUKo_JAchbAFACUBFuR5NY7evbe9iUg9jh4DDtHE1g2BNs7Tfupim3lnXaSVG6J3HR1d11YtBhpfTaS9SXr7iQmNk-loOySv_444IQeN6QKe_sxj8nRz_bi-yzYPt_fr1SarCsFjhqZeStvURhXSgi2xZEXBm0bVgFwKW0mZL9GYyqZ_VdZS5TaveInWGmkk5MfkYs5Nt7xNGKLu21Bh15kB3RQ0KwXLVSnzIqHnf9Ctm_yQtksUKxSUjPFEsZmqvAvBY6NHnzryH5qB3hWu58J1KlzvCtc7h89OSOzwgv5X8r_SF4R9haw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614906112</pqid></control><display><type>article</type><title>Approximate representations for multi-robot control policies that maximize mutual information</title><source>Springer Nature</source><creator>Charrow, Benjamin ; Kumar, Vijay ; Michael, Nathan</creator><creatorcontrib>Charrow, Benjamin ; Kumar, Vijay ; Michael, Nathan</creatorcontrib><description>We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations associated with such policies scale poorly with the number of robots, the time horizon associated with the policy, and typical non-parametric representations of the belief, we design approximate representations that enable real-time operation. The main contributions of this paper include the control policy, an algorithm for approximating the belief state, and an extensive study of the performance of these algorithms using simulations and real world experiments in complex, indoor environments.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-014-9411-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Computer Imaging ; Control ; Engineering ; Estimates ; Mathematical analysis ; Mechatronics ; Multiple robots ; Pattern Recognition and Graphics ; Policies ; Representations ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2014-12, Vol.37 (4), p.383-400</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703</citedby><cites>FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Charrow, Benjamin</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Michael, Nathan</creatorcontrib><title>Approximate representations for multi-robot control policies that maximize mutual information</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations associated with such policies scale poorly with the number of robots, the time horizon associated with the policy, and typical non-parametric representations of the belief, we design approximate representations that enable real-time operation. The main contributions of this paper include the control policy, an algorithm for approximating the belief state, and an extensive study of the performance of these algorithms using simulations and real world experiments in complex, indoor environments.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Multiple robots</subject><subject>Pattern Recognition and Graphics</subject><subject>Policies</subject><subject>Representations</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouH78AG8BL16qk7RpNsdl8QsWvOhRQtJOtUvb1CQF9debtR5E8BDmkOd5mXkJOWNwyQDkVWAgWJFBeqpgLON7ZMGEzDMpuNwnC1BcZUKo_JAchbAFACUBFuR5NY7evbe9iUg9jh4DDtHE1g2BNs7Tfupim3lnXaSVG6J3HR1d11YtBhpfTaS9SXr7iQmNk-loOySv_444IQeN6QKe_sxj8nRz_bi-yzYPt_fr1SarCsFjhqZeStvURhXSgi2xZEXBm0bVgFwKW0mZL9GYyqZ_VdZS5TaveInWGmkk5MfkYs5Nt7xNGKLu21Bh15kB3RQ0KwXLVSnzIqHnf9Ctm_yQtksUKxSUjPFEsZmqvAvBY6NHnzryH5qB3hWu58J1KlzvCtc7h89OSOzwgv5X8r_SF4R9haw</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Charrow, Benjamin</creator><creator>Kumar, Vijay</creator><creator>Michael, Nathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20141201</creationdate><title>Approximate representations for multi-robot control policies that maximize mutual information</title><author>Charrow, Benjamin ; Kumar, Vijay ; Michael, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Multiple robots</topic><topic>Pattern Recognition and Graphics</topic><topic>Policies</topic><topic>Representations</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charrow, Benjamin</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Michael, Nathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charrow, Benjamin</au><au>Kumar, Vijay</au><au>Michael, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate representations for multi-robot control policies that maximize mutual information</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>37</volume><issue>4</issue><spage>383</spage><epage>400</epage><pages>383-400</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations associated with such policies scale poorly with the number of robots, the time horizon associated with the policy, and typical non-parametric representations of the belief, we design approximate representations that enable real-time operation. The main contributions of this paper include the control policy, an algorithm for approximating the belief state, and an extensive study of the performance of these algorithms using simulations and real world experiments in complex, indoor environments.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-014-9411-2</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2014-12, Vol.37 (4), p.383-400 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651396734 |
source | Springer Nature |
subjects | Algorithms Approximation Artificial Intelligence Computer Imaging Control Engineering Estimates Mathematical analysis Mechatronics Multiple robots Pattern Recognition and Graphics Policies Representations Robotics Robotics and Automation Robots Vision |
title | Approximate representations for multi-robot control policies that maximize mutual information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20representations%20for%20multi-robot%20control%20policies%20that%20maximize%20mutual%20information&rft.jtitle=Autonomous%20robots&rft.au=Charrow,%20Benjamin&rft.date=2014-12-01&rft.volume=37&rft.issue=4&rft.spage=383&rft.epage=400&rft.pages=383-400&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-014-9411-2&rft_dat=%3Cproquest_cross%3E3467757461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-ead87bfda947b0b6e61442ff9d0e275bc7738eaacb47b96d793b3c26ebba7a703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614906112&rft_id=info:pmid/&rfr_iscdi=true |