Loading…

Norm convergence of realistic projection and reflection methods

We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.

Saved in:
Bibliographic Details
Published in:Optimization 2015-01, Vol.64 (1), p.161-178
Main Authors: Borwein, Jonathan M., Sims, Brailey, Tam, Matthew K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3
cites cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3
container_end_page 178
container_issue 1
container_start_page 161
container_title Optimization
container_volume 64
creator Borwein, Jonathan M.
Sims, Brailey
Tam, Matthew K.
description We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.
doi_str_mv 10.1080/02331934.2014.947499
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651399972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651399972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk2PHFsacKVXxJFSzdLcexIVViFzsF9d_jKGVhYDqd7rnTew9C1wQvCOb4DheUEkFhUWACCwEVCHGCZgQXIgcB5SmajUg-MufoIsYtxgVhBczQ8tWHPtPefZnwbpw2mbdZMKpr49DqbBf81uih9S5TrkkD2x3b3gwfvomX6MyqLpqrY52jzePDZvWcr9-eXlb361wDhyGlYIYrAyVgaytSG2ZrZjnw0nJValZUtLa81ACkYqXGFRBLwRBKOIGmpnN0O51NgT73Jg6yb6M2Xaec8fsoCSsJFUJURUJv_qBbvw8uhUsUJF0ADBIFE6WDjzH9JXeh7VU4SILlKFX-SpWjVDlJTWvLaa11NolT3z50jRzUofPBBuV0GyX998IP4tV8cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640804464</pqid></control><display><type>article</type><title>Norm convergence of realistic projection and reflection methods</title><source>Taylor and Francis Science and Technology Collection</source><creator>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</creator><creatorcontrib>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</creatorcontrib><description>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</description><identifier>ISSN: 0233-1934</identifier><identifier>EISSN: 1029-4945</identifier><identifier>DOI: 10.1080/02331934.2014.947499</identifier><identifier>CODEN: OPTZDQ</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>alternating projection method ; Constraining ; Convergence ; Douglas-Rachford method ; Hilbert lattice ; Mathematical analysis ; norm convergence ; Norms ; Optimization ; Projection ; Reflection ; Studies</subject><ispartof>Optimization, 2015-01, Vol.64 (1), p.161-178</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Group 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</citedby><cites>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Borwein, Jonathan M.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><creatorcontrib>Tam, Matthew K.</creatorcontrib><title>Norm convergence of realistic projection and reflection methods</title><title>Optimization</title><description>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</description><subject>alternating projection method</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Douglas-Rachford method</subject><subject>Hilbert lattice</subject><subject>Mathematical analysis</subject><subject>norm convergence</subject><subject>Norms</subject><subject>Optimization</subject><subject>Projection</subject><subject>Reflection</subject><subject>Studies</subject><issn>0233-1934</issn><issn>1029-4945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk2PHFsacKVXxJFSzdLcexIVViFzsF9d_jKGVhYDqd7rnTew9C1wQvCOb4DheUEkFhUWACCwEVCHGCZgQXIgcB5SmajUg-MufoIsYtxgVhBczQ8tWHPtPefZnwbpw2mbdZMKpr49DqbBf81uih9S5TrkkD2x3b3gwfvomX6MyqLpqrY52jzePDZvWcr9-eXlb361wDhyGlYIYrAyVgaytSG2ZrZjnw0nJValZUtLa81ACkYqXGFRBLwRBKOIGmpnN0O51NgT73Jg6yb6M2Xaec8fsoCSsJFUJURUJv_qBbvw8uhUsUJF0ADBIFE6WDjzH9JXeh7VU4SILlKFX-SpWjVDlJTWvLaa11NolT3z50jRzUofPBBuV0GyX998IP4tV8cQ</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Borwein, Jonathan M.</creator><creator>Sims, Brailey</creator><creator>Tam, Matthew K.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>KR7</scope></search><sort><creationdate>20150102</creationdate><title>Norm convergence of realistic projection and reflection methods</title><author>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alternating projection method</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Douglas-Rachford method</topic><topic>Hilbert lattice</topic><topic>Mathematical analysis</topic><topic>norm convergence</topic><topic>Norms</topic><topic>Optimization</topic><topic>Projection</topic><topic>Reflection</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borwein, Jonathan M.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><creatorcontrib>Tam, Matthew K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borwein, Jonathan M.</au><au>Sims, Brailey</au><au>Tam, Matthew K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norm convergence of realistic projection and reflection methods</atitle><jtitle>Optimization</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>64</volume><issue>1</issue><spage>161</spage><epage>178</epage><pages>161-178</pages><issn>0233-1934</issn><eissn>1029-4945</eissn><coden>OPTZDQ</coden><abstract>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02331934.2014.947499</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0233-1934
ispartof Optimization, 2015-01, Vol.64 (1), p.161-178
issn 0233-1934
1029-4945
language eng
recordid cdi_proquest_miscellaneous_1651399972
source Taylor and Francis Science and Technology Collection
subjects alternating projection method
Constraining
Convergence
Douglas-Rachford method
Hilbert lattice
Mathematical analysis
norm convergence
Norms
Optimization
Projection
Reflection
Studies
title Norm convergence of realistic projection and reflection methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norm%20convergence%20of%20realistic%20projection%20and%20reflection%20methods&rft.jtitle=Optimization&rft.au=Borwein,%20Jonathan%20M.&rft.date=2015-01-02&rft.volume=64&rft.issue=1&rft.spage=161&rft.epage=178&rft.pages=161-178&rft.issn=0233-1934&rft.eissn=1029-4945&rft.coden=OPTZDQ&rft_id=info:doi/10.1080/02331934.2014.947499&rft_dat=%3Cproquest_infor%3E1651399972%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1640804464&rft_id=info:pmid/&rfr_iscdi=true