Loading…
Norm convergence of realistic projection and reflection methods
We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.
Saved in:
Published in: | Optimization 2015-01, Vol.64 (1), p.161-178 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3 |
container_end_page | 178 |
container_issue | 1 |
container_start_page | 161 |
container_title | Optimization |
container_volume | 64 |
creator | Borwein, Jonathan M. Sims, Brailey Tam, Matthew K. |
description | We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates. |
doi_str_mv | 10.1080/02331934.2014.947499 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651399972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651399972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk2PHFsacKVXxJFSzdLcexIVViFzsF9d_jKGVhYDqd7rnTew9C1wQvCOb4DheUEkFhUWACCwEVCHGCZgQXIgcB5SmajUg-MufoIsYtxgVhBczQ8tWHPtPefZnwbpw2mbdZMKpr49DqbBf81uih9S5TrkkD2x3b3gwfvomX6MyqLpqrY52jzePDZvWcr9-eXlb361wDhyGlYIYrAyVgaytSG2ZrZjnw0nJValZUtLa81ACkYqXGFRBLwRBKOIGmpnN0O51NgT73Jg6yb6M2Xaec8fsoCSsJFUJURUJv_qBbvw8uhUsUJF0ADBIFE6WDjzH9JXeh7VU4SILlKFX-SpWjVDlJTWvLaa11NolT3z50jRzUofPBBuV0GyX998IP4tV8cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640804464</pqid></control><display><type>article</type><title>Norm convergence of realistic projection and reflection methods</title><source>Taylor and Francis Science and Technology Collection</source><creator>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</creator><creatorcontrib>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</creatorcontrib><description>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</description><identifier>ISSN: 0233-1934</identifier><identifier>EISSN: 1029-4945</identifier><identifier>DOI: 10.1080/02331934.2014.947499</identifier><identifier>CODEN: OPTZDQ</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>alternating projection method ; Constraining ; Convergence ; Douglas-Rachford method ; Hilbert lattice ; Mathematical analysis ; norm convergence ; Norms ; Optimization ; Projection ; Reflection ; Studies</subject><ispartof>Optimization, 2015-01, Vol.64 (1), p.161-178</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Group 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</citedby><cites>FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Borwein, Jonathan M.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><creatorcontrib>Tam, Matthew K.</creatorcontrib><title>Norm convergence of realistic projection and reflection methods</title><title>Optimization</title><description>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</description><subject>alternating projection method</subject><subject>Constraining</subject><subject>Convergence</subject><subject>Douglas-Rachford method</subject><subject>Hilbert lattice</subject><subject>Mathematical analysis</subject><subject>norm convergence</subject><subject>Norms</subject><subject>Optimization</subject><subject>Projection</subject><subject>Reflection</subject><subject>Studies</subject><issn>0233-1934</issn><issn>1029-4945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgisbCk2PHFsacKVXxJFSzdLcexIVViFzsF9d_jKGVhYDqd7rnTew9C1wQvCOb4DheUEkFhUWACCwEVCHGCZgQXIgcB5SmajUg-MufoIsYtxgVhBczQ8tWHPtPefZnwbpw2mbdZMKpr49DqbBf81uih9S5TrkkD2x3b3gwfvomX6MyqLpqrY52jzePDZvWcr9-eXlb361wDhyGlYIYrAyVgaytSG2ZrZjnw0nJValZUtLa81ACkYqXGFRBLwRBKOIGmpnN0O51NgT73Jg6yb6M2Xaec8fsoCSsJFUJURUJv_qBbvw8uhUsUJF0ADBIFE6WDjzH9JXeh7VU4SILlKFX-SpWjVDlJTWvLaa11NolT3z50jRzUofPBBuV0GyX998IP4tV8cQ</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Borwein, Jonathan M.</creator><creator>Sims, Brailey</creator><creator>Tam, Matthew K.</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>KR7</scope></search><sort><creationdate>20150102</creationdate><title>Norm convergence of realistic projection and reflection methods</title><author>Borwein, Jonathan M. ; Sims, Brailey ; Tam, Matthew K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alternating projection method</topic><topic>Constraining</topic><topic>Convergence</topic><topic>Douglas-Rachford method</topic><topic>Hilbert lattice</topic><topic>Mathematical analysis</topic><topic>norm convergence</topic><topic>Norms</topic><topic>Optimization</topic><topic>Projection</topic><topic>Reflection</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borwein, Jonathan M.</creatorcontrib><creatorcontrib>Sims, Brailey</creatorcontrib><creatorcontrib>Tam, Matthew K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borwein, Jonathan M.</au><au>Sims, Brailey</au><au>Tam, Matthew K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norm convergence of realistic projection and reflection methods</atitle><jtitle>Optimization</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>64</volume><issue>1</issue><spage>161</spage><epage>178</epage><pages>161-178</pages><issn>0233-1934</issn><eissn>1029-4945</eissn><coden>OPTZDQ</coden><abstract>We provide sufficient conditions for norm convergence of various projection and reflection methods, as well as giving limiting examples regarding convergence rates.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/02331934.2014.947499</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0233-1934 |
ispartof | Optimization, 2015-01, Vol.64 (1), p.161-178 |
issn | 0233-1934 1029-4945 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651399972 |
source | Taylor and Francis Science and Technology Collection |
subjects | alternating projection method Constraining Convergence Douglas-Rachford method Hilbert lattice Mathematical analysis norm convergence Norms Optimization Projection Reflection Studies |
title | Norm convergence of realistic projection and reflection methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norm%20convergence%20of%20realistic%20projection%20and%20reflection%20methods&rft.jtitle=Optimization&rft.au=Borwein,%20Jonathan%20M.&rft.date=2015-01-02&rft.volume=64&rft.issue=1&rft.spage=161&rft.epage=178&rft.pages=161-178&rft.issn=0233-1934&rft.eissn=1029-4945&rft.coden=OPTZDQ&rft_id=info:doi/10.1080/02331934.2014.947499&rft_dat=%3Cproquest_infor%3E1651399972%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-496e8ae4540ff71be6fb6f8485f8a5c6273bf85c441765c0741f34e131814db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1640804464&rft_id=info:pmid/&rfr_iscdi=true |