Loading…
Kinetic modeling and synergy quantification in sono and photooxidative treatment of simulated dyehouse effluent
The aim of this work was to explore the application of sulfate radical based advanced oxidation processes: photooxidation (UV/PMS/PS), sonooxidation (US/PMS/PS) and combined sono-photooxidation (US/UV/PMS/PS) for the mineralization of simulated dyehouse effluent (WW); using peroxymonosulfate (PMS) a...
Saved in:
Published in: | Water research (Oxford) 2012-11, Vol.46 (17), p.5683-5695 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this work was to explore the application of sulfate radical based advanced oxidation processes: photooxidation (UV/PMS/PS), sonooxidation (US/PMS/PS) and combined sono-photooxidation (US/UV/PMS/PS) for the mineralization of simulated dyehouse effluent (WW); using peroxymonosulfate (PMS) and persulfate (PS) as oxidants. Experiments were performed in a reaction vessel of a defined geometry and axially positioned source of UV-C radiation, all placed in the ultrasonic bath (35 kHz). Mathematical model of the process was developed according to the proposed degradation scheme. Decomposition of dyestuff (C.I. Reactive Violet 2, RV2 and C.I. Reactive Blue 7, RB7), surfactant (linear alkylbenzene sulfonate; hereafter: LAS) and auxiliary organic components was explored in three types of model wastewater: WW, simulated effluent excluding inorganic species (WW-IS) and model solution that consists of a specific compound (hereafter: compound model solutions). The influence of inorganic matrix (Cl−, CO32−/HCO3−) was studied due to the corresponding quenching affinity toward HO and SO4− radicals. The efficiency of applied processes was evaluated and the response to combined phenomena (cavitation and irradiation) was quantified as synergy index, fSyn. Sono-photooxidative treatment (US/UV/PMS/PS) of WW resulted in a partial mineralization and partial decolourization; approximately 40% of initial TOC and 30% of initial RB7 remained after 60 min of treatment, while RV2 and LAS molecule were completely decomposed. Circumstantially, the combined process increased the mineralization efficiency by a factor of 3 (fSyn = 3.026).
[Display omitted]
► Summarized reactions for sulfate radical based advanced oxidation processes. ► Developed mathematical model. ► Explored decomposition of each pollutant in effluent. ► Determined role of inorganic scavengers. ► Quantified response to combined phenomena as synergy index (fSyn). |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2012.07.058 |