Loading…

CFD modelling and validation of wall condensation in the presence of non-condensable gases

•A wall condensation model was implemented and validated in ANSYS CFX.•Condensation rate is assumed to be controlled by the concentration boundary layer.•Validation was done using two laboratory scale experiments.•CFD calculations show good agreement with experimental data. The aim of this paper is...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and design 2014-11, Vol.279, p.137-146
Main Authors: Zschaeck, G., Frank, T., Burns, A.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3
cites cdi_FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3
container_end_page 146
container_issue
container_start_page 137
container_title Nuclear engineering and design
container_volume 279
creator Zschaeck, G.
Frank, T.
Burns, A.D.
description •A wall condensation model was implemented and validated in ANSYS CFX.•Condensation rate is assumed to be controlled by the concentration boundary layer.•Validation was done using two laboratory scale experiments.•CFD calculations show good agreement with experimental data. The aim of this paper is to present and validate a mathematical model implemented in ANSYS CFD for the simulation of wall condensation in the presence of non-condensable substances. The model employs a mass sink at isothermal walls or conjugate heat transfer (CHT) domain interfaces where condensation takes place. The model was validated using the data reported by Ambrosini et al. (2008) and Kuhn et al. (1997).
doi_str_mv 10.1016/j.nucengdes.2014.03.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651408976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549314001393</els_id><sourcerecordid>1651408976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wRy97JqvbjbHUj-h4EVBvIRsMqkp26RuthX_vbtUvTqXgeF5B94HoUtKSkpodb0u485CXDnIJSNUlISXhMgjNKG1ZIWcqddjNCGEqWImFD9FZzmvyTiKTdDb4u4Gb5KDtg1xhU10eG_a4EwfUsTJ40_Tttim6CDmwzFE3L8D3naQIVoYoZhi8cs0LeCVyZDP0Yk3bYaLnz1FL3e3z4uHYvl0_7iYLwsraN0XslJVUzsphOPEeW6k8dJUNWuUF9w3TnhKhWycYtxRA65mHBgX1jRuoIBP0dXh77ZLHzvIvd6EbIdCJkLaZU2rGRWkVrIaUHlAbZdy7sDrbRc2pvvSlOjRpl7rP5t6tKkJ14PNITk_JGFosg_Q6WzDWN-FDmyvXQr__vgGtKyDdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651408976</pqid></control><display><type>article</type><title>CFD modelling and validation of wall condensation in the presence of non-condensable gases</title><source>ScienceDirect Journals</source><creator>Zschaeck, G. ; Frank, T. ; Burns, A.D.</creator><creatorcontrib>Zschaeck, G. ; Frank, T. ; Burns, A.D.</creatorcontrib><description>•A wall condensation model was implemented and validated in ANSYS CFX.•Condensation rate is assumed to be controlled by the concentration boundary layer.•Validation was done using two laboratory scale experiments.•CFD calculations show good agreement with experimental data. The aim of this paper is to present and validate a mathematical model implemented in ANSYS CFD for the simulation of wall condensation in the presence of non-condensable substances. The model employs a mass sink at isothermal walls or conjugate heat transfer (CHT) domain interfaces where condensation takes place. The model was validated using the data reported by Ambrosini et al. (2008) and Kuhn et al. (1997).</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2014.03.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational fluid dynamics ; Computer simulation ; Condensing ; Conjugates ; Mathematical models ; Nuclear engineering ; Walls</subject><ispartof>Nuclear engineering and design, 2014-11, Vol.279, p.137-146</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3</citedby><cites>FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zschaeck, G.</creatorcontrib><creatorcontrib>Frank, T.</creatorcontrib><creatorcontrib>Burns, A.D.</creatorcontrib><title>CFD modelling and validation of wall condensation in the presence of non-condensable gases</title><title>Nuclear engineering and design</title><description>•A wall condensation model was implemented and validated in ANSYS CFX.•Condensation rate is assumed to be controlled by the concentration boundary layer.•Validation was done using two laboratory scale experiments.•CFD calculations show good agreement with experimental data. The aim of this paper is to present and validate a mathematical model implemented in ANSYS CFD for the simulation of wall condensation in the presence of non-condensable substances. The model employs a mass sink at isothermal walls or conjugate heat transfer (CHT) domain interfaces where condensation takes place. The model was validated using the data reported by Ambrosini et al. (2008) and Kuhn et al. (1997).</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensing</subject><subject>Conjugates</subject><subject>Mathematical models</subject><subject>Nuclear engineering</subject><subject>Walls</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wRy97JqvbjbHUj-h4EVBvIRsMqkp26RuthX_vbtUvTqXgeF5B94HoUtKSkpodb0u485CXDnIJSNUlISXhMgjNKG1ZIWcqddjNCGEqWImFD9FZzmvyTiKTdDb4u4Gb5KDtg1xhU10eG_a4EwfUsTJ40_Tttim6CDmwzFE3L8D3naQIVoYoZhi8cs0LeCVyZDP0Yk3bYaLnz1FL3e3z4uHYvl0_7iYLwsraN0XslJVUzsphOPEeW6k8dJUNWuUF9w3TnhKhWycYtxRA65mHBgX1jRuoIBP0dXh77ZLHzvIvd6EbIdCJkLaZU2rGRWkVrIaUHlAbZdy7sDrbRc2pvvSlOjRpl7rP5t6tKkJ14PNITk_JGFosg_Q6WzDWN-FDmyvXQr__vgGtKyDdg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Zschaeck, G.</creator><creator>Frank, T.</creator><creator>Burns, A.D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>CFD modelling and validation of wall condensation in the presence of non-condensable gases</title><author>Zschaeck, G. ; Frank, T. ; Burns, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensing</topic><topic>Conjugates</topic><topic>Mathematical models</topic><topic>Nuclear engineering</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zschaeck, G.</creatorcontrib><creatorcontrib>Frank, T.</creatorcontrib><creatorcontrib>Burns, A.D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zschaeck, G.</au><au>Frank, T.</au><au>Burns, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modelling and validation of wall condensation in the presence of non-condensable gases</atitle><jtitle>Nuclear engineering and design</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>279</volume><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•A wall condensation model was implemented and validated in ANSYS CFX.•Condensation rate is assumed to be controlled by the concentration boundary layer.•Validation was done using two laboratory scale experiments.•CFD calculations show good agreement with experimental data. The aim of this paper is to present and validate a mathematical model implemented in ANSYS CFD for the simulation of wall condensation in the presence of non-condensable substances. The model employs a mass sink at isothermal walls or conjugate heat transfer (CHT) domain interfaces where condensation takes place. The model was validated using the data reported by Ambrosini et al. (2008) and Kuhn et al. (1997).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2014.03.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2014-11, Vol.279, p.137-146
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_1651408976
source ScienceDirect Journals
subjects Computational fluid dynamics
Computer simulation
Condensing
Conjugates
Mathematical models
Nuclear engineering
Walls
title CFD modelling and validation of wall condensation in the presence of non-condensable gases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modelling%20and%20validation%20of%20wall%20condensation%20in%20the%20presence%20of%20non-condensable%20gases&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Zschaeck,%20G.&rft.date=2014-11-01&rft.volume=279&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2014.03.007&rft_dat=%3Cproquest_cross%3E1651408976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-7696b8d744d30df3a7af7a682b9f43fbd4f1147bd923d1aed823e234cabd682e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651408976&rft_id=info:pmid/&rfr_iscdi=true