Loading…

A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations

SUMMARYThe critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications 2013-10, Vol.20 (5), p.852-868
Main Authors: Meerbergen, Karl, Schröder, Christian, Voss, Heinrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3
cites cdi_FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3
container_end_page 868
container_issue 5
container_start_page 852
container_title Numerical linear algebra with applications
container_volume 20
creator Meerbergen, Karl
Schröder, Christian
Voss, Heinrich
description SUMMARYThe critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.1848
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651421354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651421354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuBFFPwEf0KOXlLzscluj8WPqtSqqHgM091ZjWaTNtla--9tURQPnmYYHl6GN8sOOetxxsSxd9DjZV5uZDuc9fuUK6Y313vBqJJCbWe7Kb0yxrTqy51sMSBXUIWJpafwbusUPGmxewk1aUIk3SLQiODoFCKs7hiJD95ZjxAJ2mf07-DmSKYxTBy2iUC0yfpn0sTQkhodLGltmwYj-s6CIzibQ2eDT_vZVgMu4cH33Msez88eTi7o6GZ4eTIY0UoWrKSohWgqJQoppECZoyqgRl6JiSyBac21zpmQqMoCUFRa5AhC5nm_0TDRNcq97Ogrd_XibI6pM61NFToHHsM8Ga4VzwWXKv-lVQwpRWzMNNoW4tJwZtbdmlW3Zt3titIvurAOl_86Mx4N_nqbOvz48RDfjC5koczTeGjuxrfsdnx_bYT8BAI7i48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651421354</pqid></control><display><type>article</type><title>A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations</title><source>Wiley</source><creator>Meerbergen, Karl ; Schröder, Christian ; Voss, Heinrich</creator><creatorcontrib>Meerbergen, Karl ; Schröder, Christian ; Voss, Heinrich</creatorcontrib><description>SUMMARYThe critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1848</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>critical delay ; Delay ; delay-differential equation ; Eigenvalues ; Jacobi-Davidson ; Linear algebra ; Linear systems ; Mathematical analysis ; Mathematical models ; nonlinear eigenvalue problem ; Nonlinearity ; Solvers ; two-parameter eigenvalue problem</subject><ispartof>Numerical linear algebra with applications, 2013-10, Vol.20 (5), p.852-868</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3</citedby><cites>FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Voss, Heinrich</creatorcontrib><title>A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>SUMMARYThe critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>critical delay</subject><subject>Delay</subject><subject>delay-differential equation</subject><subject>Eigenvalues</subject><subject>Jacobi-Davidson</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>nonlinear eigenvalue problem</subject><subject>Nonlinearity</subject><subject>Solvers</subject><subject>two-parameter eigenvalue problem</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuBFFPwEf0KOXlLzscluj8WPqtSqqHgM091ZjWaTNtla--9tURQPnmYYHl6GN8sOOetxxsSxd9DjZV5uZDuc9fuUK6Y313vBqJJCbWe7Kb0yxrTqy51sMSBXUIWJpafwbusUPGmxewk1aUIk3SLQiODoFCKs7hiJD95ZjxAJ2mf07-DmSKYxTBy2iUC0yfpn0sTQkhodLGltmwYj-s6CIzibQ2eDT_vZVgMu4cH33Msez88eTi7o6GZ4eTIY0UoWrKSohWgqJQoppECZoyqgRl6JiSyBac21zpmQqMoCUFRa5AhC5nm_0TDRNcq97Ogrd_XibI6pM61NFToHHsM8Ga4VzwWXKv-lVQwpRWzMNNoW4tJwZtbdmlW3Zt3titIvurAOl_86Mx4N_nqbOvz48RDfjC5koczTeGjuxrfsdnx_bYT8BAI7i48</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Meerbergen, Karl</creator><creator>Schröder, Christian</creator><creator>Voss, Heinrich</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201310</creationdate><title>A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations</title><author>Meerbergen, Karl ; Schröder, Christian ; Voss, Heinrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>critical delay</topic><topic>Delay</topic><topic>delay-differential equation</topic><topic>Eigenvalues</topic><topic>Jacobi-Davidson</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>nonlinear eigenvalue problem</topic><topic>Nonlinearity</topic><topic>Solvers</topic><topic>two-parameter eigenvalue problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Schröder, Christian</creatorcontrib><creatorcontrib>Voss, Heinrich</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meerbergen, Karl</au><au>Schröder, Christian</au><au>Voss, Heinrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2013-10</date><risdate>2013</risdate><volume>20</volume><issue>5</issue><spage>852</spage><epage>868</epage><pages>852-868</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>SUMMARYThe critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1848</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2013-10, Vol.20 (5), p.852-868
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_1651421354
source Wiley
subjects critical delay
Delay
delay-differential equation
Eigenvalues
Jacobi-Davidson
Linear algebra
Linear systems
Mathematical analysis
Mathematical models
nonlinear eigenvalue problem
Nonlinearity
Solvers
two-parameter eigenvalue problem
title A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Jacobi-Davidson%20method%20for%20two-real-parameter%20nonlinear%20eigenvalue%20problems%20arising%20from%20delay-differential%20equations&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Meerbergen,%20Karl&rft.date=2013-10&rft.volume=20&rft.issue=5&rft.spage=852&rft.epage=868&rft.pages=852-868&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1848&rft_dat=%3Cproquest_cross%3E1651421354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3708-e622fc5273232e34e57ade1c2b38a0661664023e587ae2c624ea23449f6ab6de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651421354&rft_id=info:pmid/&rfr_iscdi=true