Loading…
Thermal stress induced dislocation distribution in directional solidification of Si for PV application
This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densiti...
Saved in:
Published in: | Journal of crystal growth 2014-12, Vol.408, p.19-24 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403 |
container_end_page | 24 |
container_issue | |
container_start_page | 19 |
container_title | Journal of crystal growth |
container_volume | 408 |
creator | Jiptner, Karolin Gao, Bing Harada, Hirofumi Miyamura, Yoshiji Fukuzawa, Masayuki Kakimoto, Koichi Sekiguchi, Takashi |
description | This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas.
•Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found. |
doi_str_mv | 10.1016/j.jcrysgro.2014.09.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651424944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814006344</els_id><sourcerecordid>1651424944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BelGcNN6k6avnSK-YEDB0W1I00RTMk1NWmH-velMdesij8M9597kQ-gcQ4IB51dt0gq39R_OJgQwTaBKABcHaIHLIo0zAHKIFmEnMRBaHqMT71uAkMSwQGr9Kd2Gm8gPTnof6a4ZhWyiRntjBR-07ab74HQ97oSetJNiElPMGt1opWerVdGrjpR10ct7xPvezIVTdKS48fJsPpfo7f5uffsYr54fnm5vVrGgFA9xraqUkgrLXORYFiIVNSaZpLTmkKoyBc45KfMsPL1oKGlyiquahyrJeSEppEt0ue_bO_s1Sj-wjfZCGsM7aUfPcJ5hSmhFabDme6tw1nsnFeud3nC3ZRjYBJa17Bcsm8AyqFgAG4IX8wzuBTfK8U5o_5cmZQVhlcF3vffJ8OFvLR3zQssu0N3xY43V_436AeNrk9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651424944</pqid></control><display><type>article</type><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><source>ScienceDirect Freedom Collection</source><creator>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</creator><creatorcontrib>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</creatorcontrib><description>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas.
•Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.09.017</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. directional solidification ; A1. dislocations ; A1. residual strain ; A1. thermal stress ; Activation ; B2. semiconducting silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Defects and impurities in crystals; microstructure ; Dislocation density ; Dislocations ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Linear defects: dislocations, disclinations ; Materials science ; Mathematical models ; Methods of crystal growth; physics of crystal growth ; Obstacles ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Silicon ; Solidification ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Thermal stresses</subject><ispartof>Journal of crystal growth, 2014-12, Vol.408, p.19-24</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</citedby><cites>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</cites><orcidid>0000-0001-6416-4483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28902898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiptner, Karolin</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Harada, Hirofumi</creatorcontrib><creatorcontrib>Miyamura, Yoshiji</creatorcontrib><creatorcontrib>Fukuzawa, Masayuki</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><creatorcontrib>Sekiguchi, Takashi</creatorcontrib><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><title>Journal of crystal growth</title><description>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas.
•Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</description><subject>A1. directional solidification</subject><subject>A1. dislocations</subject><subject>A1. residual strain</subject><subject>A1. thermal stress</subject><subject>Activation</subject><subject>B2. semiconducting silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Dislocation density</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Obstacles</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solidification</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Thermal stresses</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BelGcNN6k6avnSK-YEDB0W1I00RTMk1NWmH-velMdesij8M9597kQ-gcQ4IB51dt0gq39R_OJgQwTaBKABcHaIHLIo0zAHKIFmEnMRBaHqMT71uAkMSwQGr9Kd2Gm8gPTnof6a4ZhWyiRntjBR-07ab74HQ97oSetJNiElPMGt1opWerVdGrjpR10ct7xPvezIVTdKS48fJsPpfo7f5uffsYr54fnm5vVrGgFA9xraqUkgrLXORYFiIVNSaZpLTmkKoyBc45KfMsPL1oKGlyiquahyrJeSEppEt0ue_bO_s1Sj-wjfZCGsM7aUfPcJ5hSmhFabDme6tw1nsnFeud3nC3ZRjYBJa17Bcsm8AyqFgAG4IX8wzuBTfK8U5o_5cmZQVhlcF3vffJ8OFvLR3zQssu0N3xY43V_436AeNrk9o</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Jiptner, Karolin</creator><creator>Gao, Bing</creator><creator>Harada, Hirofumi</creator><creator>Miyamura, Yoshiji</creator><creator>Fukuzawa, Masayuki</creator><creator>Kakimoto, Koichi</creator><creator>Sekiguchi, Takashi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6416-4483</orcidid></search><sort><creationdate>20141215</creationdate><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><author>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. directional solidification</topic><topic>A1. dislocations</topic><topic>A1. residual strain</topic><topic>A1. thermal stress</topic><topic>Activation</topic><topic>B2. semiconducting silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Dislocation density</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Obstacles</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solidification</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiptner, Karolin</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Harada, Hirofumi</creatorcontrib><creatorcontrib>Miyamura, Yoshiji</creatorcontrib><creatorcontrib>Fukuzawa, Masayuki</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><creatorcontrib>Sekiguchi, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiptner, Karolin</au><au>Gao, Bing</au><au>Harada, Hirofumi</au><au>Miyamura, Yoshiji</au><au>Fukuzawa, Masayuki</au><au>Kakimoto, Koichi</au><au>Sekiguchi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>408</volume><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas.
•Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.09.017</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6416-4483</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2014-12, Vol.408, p.19-24 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651424944 |
source | ScienceDirect Freedom Collection |
subjects | A1. directional solidification A1. dislocations A1. residual strain A1. thermal stress Activation B2. semiconducting silicon Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystal growth Defects and impurities in crystals microstructure Dislocation density Dislocations Exact sciences and technology Growth from melts zone melting and refining Linear defects: dislocations, disclinations Materials science Mathematical models Methods of crystal growth physics of crystal growth Obstacles Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Silicon Solidification Structure of solids and liquids crystallography Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Thermal stresses |
title | Thermal stress induced dislocation distribution in directional solidification of Si for PV application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stress%20induced%20dislocation%20distribution%20in%20directional%20solidification%20of%20Si%20for%20PV%20application&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Jiptner,%20Karolin&rft.date=2014-12-15&rft.volume=408&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.09.017&rft_dat=%3Cproquest_cross%3E1651424944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651424944&rft_id=info:pmid/&rfr_iscdi=true |