Loading…

Thermal stress induced dislocation distribution in directional solidification of Si for PV application

This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densiti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2014-12, Vol.408, p.19-24
Main Authors: Jiptner, Karolin, Gao, Bing, Harada, Hirofumi, Miyamura, Yoshiji, Fukuzawa, Masayuki, Kakimoto, Koichi, Sekiguchi, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403
cites cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403
container_end_page 24
container_issue
container_start_page 19
container_title Journal of crystal growth
container_volume 408
creator Jiptner, Karolin
Gao, Bing
Harada, Hirofumi
Miyamura, Yoshiji
Fukuzawa, Masayuki
Kakimoto, Koichi
Sekiguchi, Takashi
description This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas. •Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.
doi_str_mv 10.1016/j.jcrysgro.2014.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651424944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814006344</els_id><sourcerecordid>1651424944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BelGcNN6k6avnSK-YEDB0W1I00RTMk1NWmH-velMdesij8M9597kQ-gcQ4IB51dt0gq39R_OJgQwTaBKABcHaIHLIo0zAHKIFmEnMRBaHqMT71uAkMSwQGr9Kd2Gm8gPTnof6a4ZhWyiRntjBR-07ab74HQ97oSetJNiElPMGt1opWerVdGrjpR10ct7xPvezIVTdKS48fJsPpfo7f5uffsYr54fnm5vVrGgFA9xraqUkgrLXORYFiIVNSaZpLTmkKoyBc45KfMsPL1oKGlyiquahyrJeSEppEt0ue_bO_s1Sj-wjfZCGsM7aUfPcJ5hSmhFabDme6tw1nsnFeud3nC3ZRjYBJa17Bcsm8AyqFgAG4IX8wzuBTfK8U5o_5cmZQVhlcF3vffJ8OFvLR3zQssu0N3xY43V_436AeNrk9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651424944</pqid></control><display><type>article</type><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><source>ScienceDirect Freedom Collection</source><creator>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</creator><creatorcontrib>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</creatorcontrib><description>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas. •Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.09.017</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. directional solidification ; A1. dislocations ; A1. residual strain ; A1. thermal stress ; Activation ; B2. semiconducting silicon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Defects and impurities in crystals; microstructure ; Dislocation density ; Dislocations ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Linear defects: dislocations, disclinations ; Materials science ; Mathematical models ; Methods of crystal growth; physics of crystal growth ; Obstacles ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Silicon ; Solidification ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Thermal stresses</subject><ispartof>Journal of crystal growth, 2014-12, Vol.408, p.19-24</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</citedby><cites>FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</cites><orcidid>0000-0001-6416-4483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28902898$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiptner, Karolin</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Harada, Hirofumi</creatorcontrib><creatorcontrib>Miyamura, Yoshiji</creatorcontrib><creatorcontrib>Fukuzawa, Masayuki</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><creatorcontrib>Sekiguchi, Takashi</creatorcontrib><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><title>Journal of crystal growth</title><description>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas. •Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</description><subject>A1. directional solidification</subject><subject>A1. dislocations</subject><subject>A1. residual strain</subject><subject>A1. thermal stress</subject><subject>Activation</subject><subject>B2. semiconducting silicon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Dislocation density</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Obstacles</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solidification</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Thermal stresses</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BelGcNN6k6avnSK-YEDB0W1I00RTMk1NWmH-velMdesij8M9597kQ-gcQ4IB51dt0gq39R_OJgQwTaBKABcHaIHLIo0zAHKIFmEnMRBaHqMT71uAkMSwQGr9Kd2Gm8gPTnof6a4ZhWyiRntjBR-07ab74HQ97oSetJNiElPMGt1opWerVdGrjpR10ct7xPvezIVTdKS48fJsPpfo7f5uffsYr54fnm5vVrGgFA9xraqUkgrLXORYFiIVNSaZpLTmkKoyBc45KfMsPL1oKGlyiquahyrJeSEppEt0ue_bO_s1Sj-wjfZCGsM7aUfPcJ5hSmhFabDme6tw1nsnFeud3nC3ZRjYBJa17Bcsm8AyqFgAG4IX8wzuBTfK8U5o_5cmZQVhlcF3vffJ8OFvLR3zQssu0N3xY43V_436AeNrk9o</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Jiptner, Karolin</creator><creator>Gao, Bing</creator><creator>Harada, Hirofumi</creator><creator>Miyamura, Yoshiji</creator><creator>Fukuzawa, Masayuki</creator><creator>Kakimoto, Koichi</creator><creator>Sekiguchi, Takashi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6416-4483</orcidid></search><sort><creationdate>20141215</creationdate><title>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</title><author>Jiptner, Karolin ; Gao, Bing ; Harada, Hirofumi ; Miyamura, Yoshiji ; Fukuzawa, Masayuki ; Kakimoto, Koichi ; Sekiguchi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A1. directional solidification</topic><topic>A1. dislocations</topic><topic>A1. residual strain</topic><topic>A1. thermal stress</topic><topic>Activation</topic><topic>B2. semiconducting silicon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Dislocation density</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Obstacles</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solidification</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Thermal stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiptner, Karolin</creatorcontrib><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Harada, Hirofumi</creatorcontrib><creatorcontrib>Miyamura, Yoshiji</creatorcontrib><creatorcontrib>Fukuzawa, Masayuki</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><creatorcontrib>Sekiguchi, Takashi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiptner, Karolin</au><au>Gao, Bing</au><au>Harada, Hirofumi</au><au>Miyamura, Yoshiji</au><au>Fukuzawa, Masayuki</au><au>Kakimoto, Koichi</au><au>Sekiguchi, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stress induced dislocation distribution in directional solidification of Si for PV application</atitle><jtitle>Journal of crystal growth</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>408</volume><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>This paper presents the limitation of the cast technique for silicon growth and the obstacle to reduce the dislocation density below 103cm−2. The thermal stress induced dislocation density, independent of other dislocation sources, is determined and the result suggests that local dislocation densities as high as 104cm−2 are readily introduced alone in the cooling period of the crystal growth. Areas of high residual strain and dislocation densities are identified and presented. The experimental results are correlated with numerical simulation based on a three-dimensional Haasen-Alexander-Sumino (HAS) model. The dislocation introduction is caused by an activation of different slip systems in different ingot areas. •Solely thermal stress induced dislocation density was experimentally determined.•Cooling step of crystal growth introduces up to 104cm−2 dislocations.•Activation of different slip systems causes distinct dislocation pattern.•A good correlation between experiment and simulation could be found.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.09.017</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6416-4483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2014-12, Vol.408, p.19-24
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_1651424944
source ScienceDirect Freedom Collection
subjects A1. directional solidification
A1. dislocations
A1. residual strain
A1. thermal stress
Activation
B2. semiconducting silicon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystal growth
Defects and impurities in crystals
microstructure
Dislocation density
Dislocations
Exact sciences and technology
Growth from melts
zone melting and refining
Linear defects: dislocations, disclinations
Materials science
Mathematical models
Methods of crystal growth
physics of crystal growth
Obstacles
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Silicon
Solidification
Structure of solids and liquids
crystallography
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Thermal stresses
title Thermal stress induced dislocation distribution in directional solidification of Si for PV application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stress%20induced%20dislocation%20distribution%20in%20directional%20solidification%20of%20Si%20for%20PV%20application&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Jiptner,%20Karolin&rft.date=2014-12-15&rft.volume=408&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.09.017&rft_dat=%3Cproquest_cross%3E1651424944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-bf934291e6c61e7c3cb125e44ba03f830aaa28656107d42d6419ba4ba26a7e403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651424944&rft_id=info:pmid/&rfr_iscdi=true