Loading…

Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel

The effects of Ti and Nb on the microstructure of cast K100 tool steel were studied by optical and scanning electron microscopes. The amounts of Ti as 0.3, 0.7, and 1 wt pct and Nb as 0.2 and 1 wt pct were added to the studied steel. The addition of 0.3 wt pct Ti did not result in a considerable cha...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2014-12, Vol.45 (6), p.2304-2314
Main Authors: Mirzaee, Masoud, Momeni, Amir, Keshmiri, Hamid, Razavinejad, Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of Ti and Nb on the microstructure of cast K100 tool steel were studied by optical and scanning electron microscopes. The amounts of Ti as 0.3, 0.7, and 1 wt pct and Nb as 0.2 and 1 wt pct were added to the studied steel. The addition of 0.3 wt pct Ti did not result in a considerable change in the size of carbides and prior austenite grain size. However, microstructure of K100 with 0.7 and 1 wt pct Ti was considerably modified (about 55 pct) and a uniform grain size was obtained at different positions (bottom, middle, and top) of the ingot. With addition of 0.2 and 1 wt pct Nb, microstructure was modified and a more uniform grain size was obtained all over the ingot. The average modification of microstructure in the bottom, middle, and top of the ingot was about 22 pct. Both Ti and Nb could effectively decrease the segregation of Cr and C from the bottom (high cooling rate positions) to the top of the ingots (low cooling rate positions). The homogeneity of chemical composition increased with increasing Nb or Ti. In alloy with 0.7 to 1 wt pct Ti, the average size of prior austenite grains was finer than alloys with 0.2 to 1 wt pct Nb. Therefore, Ti was found more capable than Nb in the modification of microstructure and decreasing the segregation of Cr and C in cast K100 tool steel.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-014-0150-8