Loading…

On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature

The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrea...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2014-11, Vol.247, p.848-864
Main Authors: Bouchala, Jiří, Dostál, Zdeněk, Kozubek, Tomáš, Pospíšil, Lukáš, Vodstrčil, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413
cites cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413
container_end_page 864
container_issue
container_start_page 848
container_title Applied mathematics and computation
container_volume 247
creator Bouchala, Jiří
Dostál, Zdeněk
Kozubek, Tomáš
Pospíšil, Lukáš
Vodstrčil, Petr
description The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.
doi_str_mv 10.1016/j.amc.2014.09.044
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651437058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314012697</els_id><sourcerecordid>1651437058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoWiA5a2-wG76biLXdKS_IGdimAfBQqkBbqzIMv0qsyxUknOtn9fBcm5J5LA8xDky9hnhBIB69ttaXa2rABlCV0JUl6wFbaNKFQtu0u2AujqQgCIj-wqxi0ANDXKFfuzmXl6IR79tCTnZ-5Hbv18oH_86fFpzffB9xPtIv_r0gunaXL75Cw388B99gKPtDfBZOaoxRSMm9OZzpOff3O7hINJS6Ab9mE0U6RP53rNfn3_9rz-WTxsftyv7x4KKwSkopWD6rCrWwGN6UcwVaPGqifRipFshTgq7KzKnRlVg0o1PaoKOlEL2fYSxTX7ctqbj39dKCa9c9Hm281Mfokaa4VSNKDajOIJtcHHGGjU--B2JvzXCPoYrN7qHKw-Bquh0znY7Hw9OZR_ODgKOlpHs6XBBbJJD969Y78BhWyBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651437058</pqid></control><display><type>article</type><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</creator><creatorcontrib>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</creatorcontrib><description>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.09.044</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Contact ; Convergence ; Coulomb friction ; Curvature ; Elliptic constraints ; Inequalities ; Mathematical analysis ; Mathematical models ; Orthotropic friction ; Precision control ; QPQC with separable constraints ; Rate of convergence</subject><ispartof>Applied mathematics and computation, 2014-11, Vol.247, p.848-864</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</citedby><cites>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314012697$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3428,3563,27923,27924,45971,46002</link.rule.ids></links><search><creatorcontrib>Bouchala, Jiří</creatorcontrib><creatorcontrib>Dostál, Zdeněk</creatorcontrib><creatorcontrib>Kozubek, Tomáš</creatorcontrib><creatorcontrib>Pospíšil, Lukáš</creatorcontrib><creatorcontrib>Vodstrčil, Petr</creatorcontrib><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><title>Applied mathematics and computation</title><description>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</description><subject>Algorithms</subject><subject>Contact</subject><subject>Convergence</subject><subject>Coulomb friction</subject><subject>Curvature</subject><subject>Elliptic constraints</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Orthotropic friction</subject><subject>Precision control</subject><subject>QPQC with separable constraints</subject><subject>Rate of convergence</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v2zAMhoWiA5a2-wG76biLXdKS_IGdimAfBQqkBbqzIMv0qsyxUknOtn9fBcm5J5LA8xDky9hnhBIB69ttaXa2rABlCV0JUl6wFbaNKFQtu0u2AujqQgCIj-wqxi0ANDXKFfuzmXl6IR79tCTnZ-5Hbv18oH_86fFpzffB9xPtIv_r0gunaXL75Cw388B99gKPtDfBZOaoxRSMm9OZzpOff3O7hINJS6Ab9mE0U6RP53rNfn3_9rz-WTxsftyv7x4KKwSkopWD6rCrWwGN6UcwVaPGqifRipFshTgq7KzKnRlVg0o1PaoKOlEL2fYSxTX7ctqbj39dKCa9c9Hm281Mfokaa4VSNKDajOIJtcHHGGjU--B2JvzXCPoYrN7qHKw-Bquh0znY7Hw9OZR_ODgKOlpHs6XBBbJJD969Y78BhWyBIQ</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Bouchala, Jiří</creator><creator>Dostál, Zdeněk</creator><creator>Kozubek, Tomáš</creator><creator>Pospíšil, Lukáš</creator><creator>Vodstrčil, Petr</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141115</creationdate><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><author>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Contact</topic><topic>Convergence</topic><topic>Coulomb friction</topic><topic>Curvature</topic><topic>Elliptic constraints</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Orthotropic friction</topic><topic>Precision control</topic><topic>QPQC with separable constraints</topic><topic>Rate of convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchala, Jiří</creatorcontrib><creatorcontrib>Dostál, Zdeněk</creatorcontrib><creatorcontrib>Kozubek, Tomáš</creatorcontrib><creatorcontrib>Pospíšil, Lukáš</creatorcontrib><creatorcontrib>Vodstrčil, Petr</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchala, Jiří</au><au>Dostál, Zdeněk</au><au>Kozubek, Tomáš</au><au>Pospíšil, Lukáš</au><au>Vodstrčil, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>247</volume><spage>848</spage><epage>864</epage><pages>848-864</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.09.044</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-11, Vol.247, p.848-864
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1651437058
source ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Algorithms
Contact
Convergence
Coulomb friction
Curvature
Elliptic constraints
Inequalities
Mathematical analysis
Mathematical models
Orthotropic friction
Precision control
QPQC with separable constraints
Rate of convergence
title On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20solution%20of%20convex%20QPQC%20problems%20with%20elliptic%20and%20other%20separable%20constraints%20with%20strong%20curvature&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Bouchala,%20Ji%C5%99%C3%AD&rft.date=2014-11-15&rft.volume=247&rft.spage=848&rft.epage=864&rft.pages=848-864&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.09.044&rft_dat=%3Cproquest_cross%3E1651437058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651437058&rft_id=info:pmid/&rfr_iscdi=true