Loading…
On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature
The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrea...
Saved in:
Published in: | Applied mathematics and computation 2014-11, Vol.247, p.848-864 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413 |
container_end_page | 864 |
container_issue | |
container_start_page | 848 |
container_title | Applied mathematics and computation |
container_volume | 247 |
creator | Bouchala, Jiří Dostál, Zdeněk Kozubek, Tomáš Pospíšil, Lukáš Vodstrčil, Petr |
description | The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables. |
doi_str_mv | 10.1016/j.amc.2014.09.044 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651437058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314012697</els_id><sourcerecordid>1651437058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoWiA5a2-wG76biLXdKS_IGdimAfBQqkBbqzIMv0qsyxUknOtn9fBcm5J5LA8xDky9hnhBIB69ttaXa2rABlCV0JUl6wFbaNKFQtu0u2AujqQgCIj-wqxi0ANDXKFfuzmXl6IR79tCTnZ-5Hbv18oH_86fFpzffB9xPtIv_r0gunaXL75Cw388B99gKPtDfBZOaoxRSMm9OZzpOff3O7hINJS6Ab9mE0U6RP53rNfn3_9rz-WTxsftyv7x4KKwSkopWD6rCrWwGN6UcwVaPGqifRipFshTgq7KzKnRlVg0o1PaoKOlEL2fYSxTX7ctqbj39dKCa9c9Hm281Mfokaa4VSNKDajOIJtcHHGGjU--B2JvzXCPoYrN7qHKw-Bquh0znY7Hw9OZR_ODgKOlpHs6XBBbJJD969Y78BhWyBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651437058</pqid></control><display><type>article</type><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</creator><creatorcontrib>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</creatorcontrib><description>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.09.044</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Contact ; Convergence ; Coulomb friction ; Curvature ; Elliptic constraints ; Inequalities ; Mathematical analysis ; Mathematical models ; Orthotropic friction ; Precision control ; QPQC with separable constraints ; Rate of convergence</subject><ispartof>Applied mathematics and computation, 2014-11, Vol.247, p.848-864</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</citedby><cites>FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314012697$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3428,3563,27923,27924,45971,46002</link.rule.ids></links><search><creatorcontrib>Bouchala, Jiří</creatorcontrib><creatorcontrib>Dostál, Zdeněk</creatorcontrib><creatorcontrib>Kozubek, Tomáš</creatorcontrib><creatorcontrib>Pospíšil, Lukáš</creatorcontrib><creatorcontrib>Vodstrčil, Petr</creatorcontrib><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><title>Applied mathematics and computation</title><description>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</description><subject>Algorithms</subject><subject>Contact</subject><subject>Convergence</subject><subject>Coulomb friction</subject><subject>Curvature</subject><subject>Elliptic constraints</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Orthotropic friction</subject><subject>Precision control</subject><subject>QPQC with separable constraints</subject><subject>Rate of convergence</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v2zAMhoWiA5a2-wG76biLXdKS_IGdimAfBQqkBbqzIMv0qsyxUknOtn9fBcm5J5LA8xDky9hnhBIB69ttaXa2rABlCV0JUl6wFbaNKFQtu0u2AujqQgCIj-wqxi0ANDXKFfuzmXl6IR79tCTnZ-5Hbv18oH_86fFpzffB9xPtIv_r0gunaXL75Cw388B99gKPtDfBZOaoxRSMm9OZzpOff3O7hINJS6Ab9mE0U6RP53rNfn3_9rz-WTxsftyv7x4KKwSkopWD6rCrWwGN6UcwVaPGqifRipFshTgq7KzKnRlVg0o1PaoKOlEL2fYSxTX7ctqbj39dKCa9c9Hm281Mfokaa4VSNKDajOIJtcHHGGjU--B2JvzXCPoYrN7qHKw-Bquh0znY7Hw9OZR_ODgKOlpHs6XBBbJJD969Y78BhWyBIQ</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Bouchala, Jiří</creator><creator>Dostál, Zdeněk</creator><creator>Kozubek, Tomáš</creator><creator>Pospíšil, Lukáš</creator><creator>Vodstrčil, Petr</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141115</creationdate><title>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</title><author>Bouchala, Jiří ; Dostál, Zdeněk ; Kozubek, Tomáš ; Pospíšil, Lukáš ; Vodstrčil, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Contact</topic><topic>Convergence</topic><topic>Coulomb friction</topic><topic>Curvature</topic><topic>Elliptic constraints</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Orthotropic friction</topic><topic>Precision control</topic><topic>QPQC with separable constraints</topic><topic>Rate of convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouchala, Jiří</creatorcontrib><creatorcontrib>Dostál, Zdeněk</creatorcontrib><creatorcontrib>Kozubek, Tomáš</creatorcontrib><creatorcontrib>Pospíšil, Lukáš</creatorcontrib><creatorcontrib>Vodstrčil, Petr</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouchala, Jiří</au><au>Dostál, Zdeněk</au><au>Kozubek, Tomáš</au><au>Pospíšil, Lukáš</au><au>Vodstrčil, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>247</volume><spage>848</spage><epage>864</epage><pages>848-864</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush–Kuhn–Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rate of convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beams in mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.09.044</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-11, Vol.247, p.848-864 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651437058 |
source | ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Algorithms Contact Convergence Coulomb friction Curvature Elliptic constraints Inequalities Mathematical analysis Mathematical models Orthotropic friction Precision control QPQC with separable constraints Rate of convergence |
title | On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20solution%20of%20convex%20QPQC%20problems%20with%20elliptic%20and%20other%20separable%20constraints%20with%20strong%20curvature&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Bouchala,%20Ji%C5%99%C3%AD&rft.date=2014-11-15&rft.volume=247&rft.spage=848&rft.epage=864&rft.pages=848-864&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.09.044&rft_dat=%3Cproquest_cross%3E1651437058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-84d591968307abf0a275f2be383fec211f519c5c21af571557b1520936348b413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651437058&rft_id=info:pmid/&rfr_iscdi=true |