Loading…

Structural characterization and mutational assessment of podocin — A novel drug target to nephrotic syndrome — An in silico approach

Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alt...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences 2014-03, Vol.6 (1), p.32-39
Main Authors: Tabassum, Asra, Rajeshwari, Tadigadapa, Soni, Nidhi, Raju, D. S. B., Yadav, Mukesh, Nayarisseri, Anuraj, Jahan, Parveen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alteration directly affects their structural stability through conformational changes. Presence of these conformational changes near catalytic site or active site may alter protein function and as a consequence receptor-ligand complex interactions. The present investigation includes assessment of human podocin mutations (G92C, P118L, R138Q, and D160G) on its structure. Podocin is an important glomerular integral membrane protein thought to play a key role in steroid resistant nephrotic syndrome. Podocin has a hairpin like structure with 383 amino acids, it is an integral protein homologous to stomatin, and acts as a molecular link in a stretch-sensitive system. We modeled 3D structure of podocin by means of Modeller and validated via PROCHECK to get a Ramachandran plot (88.5% in most favored region), main chain, side chain, bad contacts, gauche and pooled standard deviation. Further, a protein engineering tool Triton was used to induce mutagenesis corresponding to four variants G92C, P118L, R138Q and D160G in the wild type. Perusal of energies of wild and mutated type of podocin structures confirmed that mutated structures were thermodynamically more stable than wild type and therefore biological events favored synthesis of mutated forms of podocin than wild type. As a conclusive part, two mutations G92C (−8179.272 kJ/mol) and P118L (−8136.685 kJ/mol) are more stable and probable to take place in podocin structure over wild podocin structure (−8105.622 kJ/mol). Though there is lesser difference in mutated and wild type (approximately, 74 and 35 kJ/mol), it may play a crucial role in deciding why mutations are favored and occur at the genetic level.
ISSN:1913-2751
1867-1462
DOI:10.1007/s12539-014-0190-4