Loading…
Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions
G-Oil Well cement was modified by blending it with blast furnace slag and silica fume at various ratios. The hydration was carried out under the hydrothermal conditions (200 °C and 1.2 MPa) up to 7 days. TG and DTG were performed on cured pastes to identify the hydrated products, their quantity and...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2014-11, Vol.118 (2), p.865-874 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | G-Oil Well cement was modified by blending it with blast furnace slag and silica fume at various ratios. The hydration was carried out under the hydrothermal conditions (200 °C and 1.2 MPa) up to 7 days. TG and DTG were performed on cured pastes to identify the hydrated products, their quantity and their stability under given hydrothermal curing conditions. The microstructure of samples was observed by a scanning electron microscope. The mechanical compressive strength was determined and the pore structure was analyzed using mercury intrusion porosimeter. It was found out that the compressive strength values of blend G-Oil Well cements markedly increased with increasing blast furnace/silica ratio. The pore structure was consolidated, as demonstrated by the displacement of pore size distribution to the region of micro and nano pores. |
---|---|
ISSN: | 1388-6150 1588-2926 1572-8943 |
DOI: | 10.1007/s10973-014-3917-x |