Loading…

Computational design of in vivo biomarkers

Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo ap...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2014-04, Vol.26 (14), p.143202-143202
Main Authors: Somogyi, Bálint, Gali, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423
cites cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423
container_end_page 143202
container_issue 14
container_start_page 143202
container_title Journal of physics. Condensed matter
container_volume 26
creator Somogyi, Bálint
Gali, Adam
description Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.
doi_str_mv 10.1088/0953-8984/26/14/143202
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651443788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651443788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK2-QslShNi5Z7KU4g0KbhTcDZO5yNQkEzNJwbd3Smq3hQNn8_3n8gGwRPAeQSFWsGQkF6WgK8xXiKYiGOIzMEeEo5xT8XkO5kdoBq5i3EIIqSD0Esww5Qwxjufgbh2abhzU4EOr6szY6L_aLLjMt9nO70JW-dCo_tv28RpcOFVHe3PoC_Dx9Pi-fsk3b8-v64dNrokohpw7AY2z2DlijKksrkplrNKowFgzzZDjTJdlya1wrDRWKF0JojgyDjtDMVmA22lu14ef0cZBNj5qW9eqtWGMEqXbKSWFEKdRhlnBcUFoQvmE6j7E2Fsnu96nz34lgnKvVO5tyb0tiblEVE5KU3B52DFWjTXH2L_DBOAJ8KGT2zD2SWQ8NfUPJ36AUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525762734</pqid></control><display><type>article</type><title>Computational design of in vivo biomarkers</title><source>Institute of Physics</source><creator>Somogyi, Bálint ; Gali, Adam</creator><creatorcontrib>Somogyi, Bálint ; Gali, Adam</creatorcontrib><description>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/14/143202</identifier><identifier>PMID: 24651562</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biocompatibility ; Biomarkers - analysis ; Biomedical materials ; Carbon Compounds, Inorganic - chemistry ; density functional theory ; Humans ; In vivo testing ; In vivo tests ; Molecular Imaging - methods ; nanocrystal ; Nanocrystals ; Nanoparticles - chemistry ; Optical properties ; point defects ; Quantum Dots ; Semiconductors ; Surgical implants ; time-dependent density functional theory</subject><ispartof>Journal of physics. Condensed matter, 2014-04, Vol.26 (14), p.143202-143202</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</citedby><cites>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24651562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somogyi, Bálint</creatorcontrib><creatorcontrib>Gali, Adam</creatorcontrib><title>Computational design of in vivo biomarkers</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</description><subject>Biocompatibility</subject><subject>Biomarkers - analysis</subject><subject>Biomedical materials</subject><subject>Carbon Compounds, Inorganic - chemistry</subject><subject>density functional theory</subject><subject>Humans</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Molecular Imaging - methods</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Optical properties</subject><subject>point defects</subject><subject>Quantum Dots</subject><subject>Semiconductors</subject><subject>Surgical implants</subject><subject>time-dependent density functional theory</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRbK2-QslShNi5Z7KU4g0KbhTcDZO5yNQkEzNJwbd3Smq3hQNn8_3n8gGwRPAeQSFWsGQkF6WgK8xXiKYiGOIzMEeEo5xT8XkO5kdoBq5i3EIIqSD0Esww5Qwxjufgbh2abhzU4EOr6szY6L_aLLjMt9nO70JW-dCo_tv28RpcOFVHe3PoC_Dx9Pi-fsk3b8-v64dNrokohpw7AY2z2DlijKksrkplrNKowFgzzZDjTJdlya1wrDRWKF0JojgyDjtDMVmA22lu14ef0cZBNj5qW9eqtWGMEqXbKSWFEKdRhlnBcUFoQvmE6j7E2Fsnu96nz34lgnKvVO5tyb0tiblEVE5KU3B52DFWjTXH2L_DBOAJ8KGT2zD2SWQ8NfUPJ36AUg</recordid><startdate>20140409</startdate><enddate>20140409</enddate><creator>Somogyi, Bálint</creator><creator>Gali, Adam</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140409</creationdate><title>Computational design of in vivo biomarkers</title><author>Somogyi, Bálint ; Gali, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatibility</topic><topic>Biomarkers - analysis</topic><topic>Biomedical materials</topic><topic>Carbon Compounds, Inorganic - chemistry</topic><topic>density functional theory</topic><topic>Humans</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Molecular Imaging - methods</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Optical properties</topic><topic>point defects</topic><topic>Quantum Dots</topic><topic>Semiconductors</topic><topic>Surgical implants</topic><topic>time-dependent density functional theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somogyi, Bálint</creatorcontrib><creatorcontrib>Gali, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somogyi, Bálint</au><au>Gali, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational design of in vivo biomarkers</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-04-09</date><risdate>2014</risdate><volume>26</volume><issue>14</issue><spage>143202</spage><epage>143202</epage><pages>143202-143202</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>24651562</pmid><doi>10.1088/0953-8984/26/14/143202</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-04, Vol.26 (14), p.143202-143202
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_1651443788
source Institute of Physics
subjects Biocompatibility
Biomarkers - analysis
Biomedical materials
Carbon Compounds, Inorganic - chemistry
density functional theory
Humans
In vivo testing
In vivo tests
Molecular Imaging - methods
nanocrystal
Nanocrystals
Nanoparticles - chemistry
Optical properties
point defects
Quantum Dots
Semiconductors
Surgical implants
time-dependent density functional theory
title Computational design of in vivo biomarkers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20design%20of%20in%20vivo%20biomarkers&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Somogyi,%20B%C3%A1lint&rft.date=2014-04-09&rft.volume=26&rft.issue=14&rft.spage=143202&rft.epage=143202&rft.pages=143202-143202&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/14/143202&rft_dat=%3Cproquest_iop_j%3E1651443788%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525762734&rft_id=info:pmid/24651562&rfr_iscdi=true