Loading…
Computational design of in vivo biomarkers
Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo ap...
Saved in:
Published in: | Journal of physics. Condensed matter 2014-04, Vol.26 (14), p.143202-143202 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423 |
container_end_page | 143202 |
container_issue | 14 |
container_start_page | 143202 |
container_title | Journal of physics. Condensed matter |
container_volume | 26 |
creator | Somogyi, Bálint Gali, Adam |
description | Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging. |
doi_str_mv | 10.1088/0953-8984/26/14/143202 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651443788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651443788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK2-QslShNi5Z7KU4g0KbhTcDZO5yNQkEzNJwbd3Smq3hQNn8_3n8gGwRPAeQSFWsGQkF6WgK8xXiKYiGOIzMEeEo5xT8XkO5kdoBq5i3EIIqSD0Esww5Qwxjufgbh2abhzU4EOr6szY6L_aLLjMt9nO70JW-dCo_tv28RpcOFVHe3PoC_Dx9Pi-fsk3b8-v64dNrokohpw7AY2z2DlijKksrkplrNKowFgzzZDjTJdlya1wrDRWKF0JojgyDjtDMVmA22lu14ef0cZBNj5qW9eqtWGMEqXbKSWFEKdRhlnBcUFoQvmE6j7E2Fsnu96nz34lgnKvVO5tyb0tiblEVE5KU3B52DFWjTXH2L_DBOAJ8KGT2zD2SWQ8NfUPJ36AUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525762734</pqid></control><display><type>article</type><title>Computational design of in vivo biomarkers</title><source>Institute of Physics</source><creator>Somogyi, Bálint ; Gali, Adam</creator><creatorcontrib>Somogyi, Bálint ; Gali, Adam</creatorcontrib><description>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/14/143202</identifier><identifier>PMID: 24651562</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biocompatibility ; Biomarkers - analysis ; Biomedical materials ; Carbon Compounds, Inorganic - chemistry ; density functional theory ; Humans ; In vivo testing ; In vivo tests ; Molecular Imaging - methods ; nanocrystal ; Nanocrystals ; Nanoparticles - chemistry ; Optical properties ; point defects ; Quantum Dots ; Semiconductors ; Surgical implants ; time-dependent density functional theory</subject><ispartof>Journal of physics. Condensed matter, 2014-04, Vol.26 (14), p.143202-143202</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</citedby><cites>FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24651562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somogyi, Bálint</creatorcontrib><creatorcontrib>Gali, Adam</creatorcontrib><title>Computational design of in vivo biomarkers</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</description><subject>Biocompatibility</subject><subject>Biomarkers - analysis</subject><subject>Biomedical materials</subject><subject>Carbon Compounds, Inorganic - chemistry</subject><subject>density functional theory</subject><subject>Humans</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Molecular Imaging - methods</subject><subject>nanocrystal</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Optical properties</subject><subject>point defects</subject><subject>Quantum Dots</subject><subject>Semiconductors</subject><subject>Surgical implants</subject><subject>time-dependent density functional theory</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRbK2-QslShNi5Z7KU4g0KbhTcDZO5yNQkEzNJwbd3Smq3hQNn8_3n8gGwRPAeQSFWsGQkF6WgK8xXiKYiGOIzMEeEo5xT8XkO5kdoBq5i3EIIqSD0Esww5Qwxjufgbh2abhzU4EOr6szY6L_aLLjMt9nO70JW-dCo_tv28RpcOFVHe3PoC_Dx9Pi-fsk3b8-v64dNrokohpw7AY2z2DlijKksrkplrNKowFgzzZDjTJdlya1wrDRWKF0JojgyDjtDMVmA22lu14ef0cZBNj5qW9eqtWGMEqXbKSWFEKdRhlnBcUFoQvmE6j7E2Fsnu96nz34lgnKvVO5tyb0tiblEVE5KU3B52DFWjTXH2L_DBOAJ8KGT2zD2SWQ8NfUPJ36AUg</recordid><startdate>20140409</startdate><enddate>20140409</enddate><creator>Somogyi, Bálint</creator><creator>Gali, Adam</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140409</creationdate><title>Computational design of in vivo biomarkers</title><author>Somogyi, Bálint ; Gali, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatibility</topic><topic>Biomarkers - analysis</topic><topic>Biomedical materials</topic><topic>Carbon Compounds, Inorganic - chemistry</topic><topic>density functional theory</topic><topic>Humans</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Molecular Imaging - methods</topic><topic>nanocrystal</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Optical properties</topic><topic>point defects</topic><topic>Quantum Dots</topic><topic>Semiconductors</topic><topic>Surgical implants</topic><topic>time-dependent density functional theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somogyi, Bálint</creatorcontrib><creatorcontrib>Gali, Adam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somogyi, Bálint</au><au>Gali, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational design of in vivo biomarkers</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-04-09</date><risdate>2014</risdate><volume>26</volume><issue>14</issue><spage>143202</spage><epage>143202</epage><pages>143202-143202</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Fluorescent semiconductor nanocrystals (or quantum dots) are very promising agents for bioimaging applications because their optical properties are superior compared to those of conventional organic dyes. However, not all the properties of these quantum dots suit the stringent criteria of in vivo applications, i.e. their employment in living organisms that might be of importance in therapy and medicine. In our review, we first summarize the properties of an 'ideal' biomarker needed for in vivo applications. Despite recent efforts, no such hand-made fluorescent quantum dot exists that may be considered as 'ideal' in this respect. We propose that ab initio atomistic simulations with predictive power can be used to design 'ideal' in vivo fluorescent semiconductor nanoparticles. We briefly review such ab initio methods that can be applied to calculate the electronic and optical properties of very small nanocrystals, with extra emphasis on density functional theory (DFT) and time-dependent DFT which are the most suitable approaches for the description of these systems. Finally, we present our recent results on this topic where we investigated the applicability of nanodiamonds and silicon carbide nanocrystals for in vivo bioimaging.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>24651562</pmid><doi>10.1088/0953-8984/26/14/143202</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2014-04, Vol.26 (14), p.143202-143202 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_1651443788 |
source | Institute of Physics |
subjects | Biocompatibility Biomarkers - analysis Biomedical materials Carbon Compounds, Inorganic - chemistry density functional theory Humans In vivo testing In vivo tests Molecular Imaging - methods nanocrystal Nanocrystals Nanoparticles - chemistry Optical properties point defects Quantum Dots Semiconductors Surgical implants time-dependent density functional theory |
title | Computational design of in vivo biomarkers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20design%20of%20in%20vivo%20biomarkers&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Somogyi,%20B%C3%A1lint&rft.date=2014-04-09&rft.volume=26&rft.issue=14&rft.spage=143202&rft.epage=143202&rft.pages=143202-143202&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/14/143202&rft_dat=%3Cproquest_iop_j%3E1651443788%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-6f80dfe2ff3dddbe2b9adeac1722c5c51f65c9996e8f59de8acb83a61df2fd423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525762734&rft_id=info:pmid/24651562&rfr_iscdi=true |