Loading…
Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation
[Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corres...
Saved in:
Published in: | Journal of molecular structure 2015-02, Vol.1081, p.395-399 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3 |
container_end_page | 399 |
container_issue | |
container_start_page | 395 |
container_title | Journal of molecular structure |
container_volume | 1081 |
creator | Makrlik, Emanuel Bohm, Stanislav Vanura, Petr |
description | [Display omitted]
•Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted.
On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex. |
doi_str_mv | 10.1016/j.molstruc.2014.10.040 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651445250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022286014010539</els_id><sourcerecordid>1651445250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKtfQXL0sjUvzaa7N6X4p1Dw0rMhm7ylKbubmmSL_famVM8eHg-GmYH5EXIPbAYM5ONu1vsupjCaGWcgsjhjgl2QCVQLXlRZuiQTxjgveCXZNbmJcccYgxyekM8lRjf21PnB77c-IF2tqI5UDxS_U9A-WDfo4LojxbZFk9wBaa9N8OZoOmdoQIP75ANt86Ut0ia7c6HRKXfekqtWdxHvfv-UbF5fNsv3Yv3xtlo-rwszF2UqBC-hbmptSwmNtFXLUcoajLUAMG8NIlgpWdUuLBgpJDe6EU2ja8EWKHE-JQ_n2n3wXyPGpHoXDXadHtCPUYEsQYiSlyxb5dmaJ8QYsFX74HodjgqYOvFUO_XHU514nvTMMwefzkHMOw4Og4rG4WDQuswgKevdfxU_edmEFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651445250</pqid></control><display><type>article</type><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><source>ScienceDirect Journals</source><creator>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</creator><creatorcontrib>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</creatorcontrib><description>[Display omitted]
•Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted.
On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</description><identifier>ISSN: 0022-2860</identifier><identifier>EISSN: 1872-8014</identifier><identifier>DOI: 10.1016/j.molstruc.2014.10.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Barium cation ; Bonding ; Cations ; Cesium ; Cesium ionophore II ; Complexation ; Constants ; DFT calculations ; Extraction ; Extraction and stability constants ; Macrocyclic compounds ; Mathematical analysis ; Nitrobenzenes ; Receptors ; Structures</subject><ispartof>Journal of molecular structure, 2015-02, Vol.1081, p.395-399</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</citedby><cites>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Makrlik, Emanuel</creatorcontrib><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Vanura, Petr</creatorcontrib><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><title>Journal of molecular structure</title><description>[Display omitted]
•Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted.
On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</description><subject>Barium cation</subject><subject>Bonding</subject><subject>Cations</subject><subject>Cesium</subject><subject>Cesium ionophore II</subject><subject>Complexation</subject><subject>Constants</subject><subject>DFT calculations</subject><subject>Extraction</subject><subject>Extraction and stability constants</subject><subject>Macrocyclic compounds</subject><subject>Mathematical analysis</subject><subject>Nitrobenzenes</subject><subject>Receptors</subject><subject>Structures</subject><issn>0022-2860</issn><issn>1872-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKtfQXL0sjUvzaa7N6X4p1Dw0rMhm7ylKbubmmSL_famVM8eHg-GmYH5EXIPbAYM5ONu1vsupjCaGWcgsjhjgl2QCVQLXlRZuiQTxjgveCXZNbmJcccYgxyekM8lRjf21PnB77c-IF2tqI5UDxS_U9A-WDfo4LojxbZFk9wBaa9N8OZoOmdoQIP75ANt86Ut0ia7c6HRKXfekqtWdxHvfv-UbF5fNsv3Yv3xtlo-rwszF2UqBC-hbmptSwmNtFXLUcoajLUAMG8NIlgpWdUuLBgpJDe6EU2ja8EWKHE-JQ_n2n3wXyPGpHoXDXadHtCPUYEsQYiSlyxb5dmaJ8QYsFX74HodjgqYOvFUO_XHU514nvTMMwefzkHMOw4Og4rG4WDQuswgKevdfxU_edmEFg</recordid><startdate>20150205</startdate><enddate>20150205</enddate><creator>Makrlik, Emanuel</creator><creator>Bohm, Stanislav</creator><creator>Vanura, Petr</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150205</creationdate><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><author>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Barium cation</topic><topic>Bonding</topic><topic>Cations</topic><topic>Cesium</topic><topic>Cesium ionophore II</topic><topic>Complexation</topic><topic>Constants</topic><topic>DFT calculations</topic><topic>Extraction</topic><topic>Extraction and stability constants</topic><topic>Macrocyclic compounds</topic><topic>Mathematical analysis</topic><topic>Nitrobenzenes</topic><topic>Receptors</topic><topic>Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrlik, Emanuel</creatorcontrib><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Vanura, Petr</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of molecular structure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrlik, Emanuel</au><au>Bohm, Stanislav</au><au>Vanura, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</atitle><jtitle>Journal of molecular structure</jtitle><date>2015-02-05</date><risdate>2015</risdate><volume>1081</volume><spage>395</spage><epage>399</epage><pages>395-399</pages><issn>0022-2860</issn><eissn>1872-8014</eissn><abstract>[Display omitted]
•Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted.
On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.molstruc.2014.10.040</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2860 |
ispartof | Journal of molecular structure, 2015-02, Vol.1081, p.395-399 |
issn | 0022-2860 1872-8014 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651445250 |
source | ScienceDirect Journals |
subjects | Barium cation Bonding Cations Cesium Cesium ionophore II Complexation Constants DFT calculations Extraction Extraction and stability constants Macrocyclic compounds Mathematical analysis Nitrobenzenes Receptors Structures |
title | Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cesium%20ionophore%20II%20as%20an%20extraordinarily%20effective%20macrocyclic%20receptor%20for%20the%20barium%20cation&rft.jtitle=Journal%20of%20molecular%20structure&rft.au=Makrlik,%20Emanuel&rft.date=2015-02-05&rft.volume=1081&rft.spage=395&rft.epage=399&rft.pages=395-399&rft.issn=0022-2860&rft.eissn=1872-8014&rft_id=info:doi/10.1016/j.molstruc.2014.10.040&rft_dat=%3Cproquest_cross%3E1651445250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651445250&rft_id=info:pmid/&rfr_iscdi=true |