Loading…

Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation

[Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corres...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular structure 2015-02, Vol.1081, p.395-399
Main Authors: Makrlik, Emanuel, Bohm, Stanislav, Vanura, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3
cites cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3
container_end_page 399
container_issue
container_start_page 395
container_title Journal of molecular structure
container_volume 1081
creator Makrlik, Emanuel
Bohm, Stanislav
Vanura, Petr
description [Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.
doi_str_mv 10.1016/j.molstruc.2014.10.040
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651445250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022286014010539</els_id><sourcerecordid>1651445250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKtfQXL0sjUvzaa7N6X4p1Dw0rMhm7ylKbubmmSL_famVM8eHg-GmYH5EXIPbAYM5ONu1vsupjCaGWcgsjhjgl2QCVQLXlRZuiQTxjgveCXZNbmJcccYgxyekM8lRjf21PnB77c-IF2tqI5UDxS_U9A-WDfo4LojxbZFk9wBaa9N8OZoOmdoQIP75ANt86Ut0ia7c6HRKXfekqtWdxHvfv-UbF5fNsv3Yv3xtlo-rwszF2UqBC-hbmptSwmNtFXLUcoajLUAMG8NIlgpWdUuLBgpJDe6EU2ja8EWKHE-JQ_n2n3wXyPGpHoXDXadHtCPUYEsQYiSlyxb5dmaJ8QYsFX74HodjgqYOvFUO_XHU514nvTMMwefzkHMOw4Og4rG4WDQuswgKevdfxU_edmEFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651445250</pqid></control><display><type>article</type><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><source>ScienceDirect Journals</source><creator>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</creator><creatorcontrib>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</creatorcontrib><description>[Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</description><identifier>ISSN: 0022-2860</identifier><identifier>EISSN: 1872-8014</identifier><identifier>DOI: 10.1016/j.molstruc.2014.10.040</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Barium cation ; Bonding ; Cations ; Cesium ; Cesium ionophore II ; Complexation ; Constants ; DFT calculations ; Extraction ; Extraction and stability constants ; Macrocyclic compounds ; Mathematical analysis ; Nitrobenzenes ; Receptors ; Structures</subject><ispartof>Journal of molecular structure, 2015-02, Vol.1081, p.395-399</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</citedby><cites>FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Makrlik, Emanuel</creatorcontrib><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Vanura, Petr</creatorcontrib><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><title>Journal of molecular structure</title><description>[Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</description><subject>Barium cation</subject><subject>Bonding</subject><subject>Cations</subject><subject>Cesium</subject><subject>Cesium ionophore II</subject><subject>Complexation</subject><subject>Constants</subject><subject>DFT calculations</subject><subject>Extraction</subject><subject>Extraction and stability constants</subject><subject>Macrocyclic compounds</subject><subject>Mathematical analysis</subject><subject>Nitrobenzenes</subject><subject>Receptors</subject><subject>Structures</subject><issn>0022-2860</issn><issn>1872-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKtfQXL0sjUvzaa7N6X4p1Dw0rMhm7ylKbubmmSL_famVM8eHg-GmYH5EXIPbAYM5ONu1vsupjCaGWcgsjhjgl2QCVQLXlRZuiQTxjgveCXZNbmJcccYgxyekM8lRjf21PnB77c-IF2tqI5UDxS_U9A-WDfo4LojxbZFk9wBaa9N8OZoOmdoQIP75ANt86Ut0ia7c6HRKXfekqtWdxHvfv-UbF5fNsv3Yv3xtlo-rwszF2UqBC-hbmptSwmNtFXLUcoajLUAMG8NIlgpWdUuLBgpJDe6EU2ja8EWKHE-JQ_n2n3wXyPGpHoXDXadHtCPUYEsQYiSlyxb5dmaJ8QYsFX74HodjgqYOvFUO_XHU514nvTMMwefzkHMOw4Og4rG4WDQuswgKevdfxU_edmEFg</recordid><startdate>20150205</startdate><enddate>20150205</enddate><creator>Makrlik, Emanuel</creator><creator>Bohm, Stanislav</creator><creator>Vanura, Petr</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150205</creationdate><title>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</title><author>Makrlik, Emanuel ; Bohm, Stanislav ; Vanura, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Barium cation</topic><topic>Bonding</topic><topic>Cations</topic><topic>Cesium</topic><topic>Cesium ionophore II</topic><topic>Complexation</topic><topic>Constants</topic><topic>DFT calculations</topic><topic>Extraction</topic><topic>Extraction and stability constants</topic><topic>Macrocyclic compounds</topic><topic>Mathematical analysis</topic><topic>Nitrobenzenes</topic><topic>Receptors</topic><topic>Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makrlik, Emanuel</creatorcontrib><creatorcontrib>Bohm, Stanislav</creatorcontrib><creatorcontrib>Vanura, Petr</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of molecular structure</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makrlik, Emanuel</au><au>Bohm, Stanislav</au><au>Vanura, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation</atitle><jtitle>Journal of molecular structure</jtitle><date>2015-02-05</date><risdate>2015</risdate><volume>1081</volume><spage>395</spage><epage>399</epage><pages>395-399</pages><issn>0022-2860</issn><eissn>1872-8014</eissn><abstract>[Display omitted] •Extremely high stability of the cesium ionophore II – Ba2+ complex was determined.•Quantum mechanical DFT calculations were applied.•Structure of the resulting complex was predicted. On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq)+2ClO4−(aq)+1(nb) ⇄1·Ba2+(nb)+2ClO4− (nb) occurring in the two-phase water–nitrobenzene system (1=cesium ionophore II; aq=aqueous phase, nb=nitrobenzene phase) was evaluated as logKex (1·Ba2+, 2ClO4−)=3.4±0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25°C: logβnb (1·Ba2+)=16.7±0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the “central” cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be −1050.4kJ/mol, confirming also the formation of this significant complex.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.molstruc.2014.10.040</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2860
ispartof Journal of molecular structure, 2015-02, Vol.1081, p.395-399
issn 0022-2860
1872-8014
language eng
recordid cdi_proquest_miscellaneous_1651445250
source ScienceDirect Journals
subjects Barium cation
Bonding
Cations
Cesium
Cesium ionophore II
Complexation
Constants
DFT calculations
Extraction
Extraction and stability constants
Macrocyclic compounds
Mathematical analysis
Nitrobenzenes
Receptors
Structures
title Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cesium%20ionophore%20II%20as%20an%20extraordinarily%20effective%20macrocyclic%20receptor%20for%20the%20barium%20cation&rft.jtitle=Journal%20of%20molecular%20structure&rft.au=Makrlik,%20Emanuel&rft.date=2015-02-05&rft.volume=1081&rft.spage=395&rft.epage=399&rft.pages=395-399&rft.issn=0022-2860&rft.eissn=1872-8014&rft_id=info:doi/10.1016/j.molstruc.2014.10.040&rft_dat=%3Cproquest_cross%3E1651445250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-42519b9ad561b6d8f2e6691cdd1113fcee1d6608f7d1c6462cab4bba9407e6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1651445250&rft_id=info:pmid/&rfr_iscdi=true