Loading…

Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle

The Central American subduction zone exhibits large variations in geochemistry, downgoing plate roughness and dip, and volcano locations over a short distance along the arc. Results from joint inversions for Vp, Vp/Vs, and hypocenters from the Tomography Under Costa Rica and Nicaragua (TUCAN) experi...

Full description

Saved in:
Bibliographic Details
Published in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2008-07, Vol.9 (7), p.np-n/a
Main Authors: Syracuse, Ellen M., Abers, Geoffrey A., Fischer, Karen, MacKenzie, Laura, Rychert, Catherine, Protti, Marino, González, Víctor, Strauch, Wilfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Central American subduction zone exhibits large variations in geochemistry, downgoing plate roughness and dip, and volcano locations over a short distance along the arc. Results from joint inversions for Vp, Vp/Vs, and hypocenters from the Tomography Under Costa Rica and Nicaragua (TUCAN) experiment give insight into its geometry and structure. In both Costa Rica and Nicaragua, the intermediate‐depth seismic zone is a single layer no more than 10 to 20 km thick. Tomographic images show that throughout Nicaragua and Costa Rica the slowest mantle P wave velocities appear below and behind the volcanic front, indicating likely zones of highest temperature extending 80 to 120 km depth. A sheet of high Vp/Vs, thought to be caused by melt, is imaged directly beneath the Nicaraguan volcanoes, whereas a weaker, broader anomaly is imaged beneath the Costa Rican volcanoes, potentially indicating a greater extent of melting beneath Nicaragua. Within the downgoing plate, anomalously low velocities occur at least 20–30 km below Wadati‐Benioff zone seismicity, to depths of 140 km beneath Nicaragua and to 60 km depth beneath Costa Rica. They indicate 10–20% serpentinized upper mantle of the downgoing plate beneath Nicaragua, similar to that inferred from refraction seaward of the trench, but continuing to subarc depths. This unusually hydrated lithosphere may introduce more water into the Nicaraguan mantle, initiating increased amount of melting and fluid flux to the arc.
ISSN:1525-2027
1525-2027
DOI:10.1029/2008GC001963