Loading…
3D Facial Similarity Measure Based on Geodesic Network and Curvatures
Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based...
Saved in:
Published in: | Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-17 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2014/832837 |