Loading…

Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm

One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Energy 2014-12, Vol.8 (4), p.434-442
Main Authors: Sathish KUMAR, K, NAVEEN, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3
cites cdi_FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3
container_end_page 442
container_issue 4
container_start_page 434
container_title Frontiers in Energy
container_volume 8
creator Sathish KUMAR, K
NAVEEN, S
description One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.
doi_str_mv 10.1007/s11708-014-0313-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651457538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663506674</cqvip_id><sourcerecordid>3530005901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3</originalsourceid><addsrcrecordid>eNp9kc1q3TAQRk1pICHNA2Qn2k03bkeSJdnLcukfBBJosxayLdkKtnSjsSk3yz5X36mvUN06LaWLrKQZzhkN-oriksIbCqDeIqUK6hJoVQKnvDw8K84YNKKksqmf_7kroKfFBeIdAFAKAhQ7K-JN_GYTwQMudibJdjE4P6zJLD4GYkJPpohIZh_87B-2rouJGNJ7XJJv19-tzUeyog8D-fnj-84szuNIbr5c54qYaYjJL-P8ojhxZkJ78XieF7cf3n_dfSqvrj9-3r27KruqEUtpRdUaJqtOmdaongtT85YpZTk0lkmbC3Dgqto4QwUH1ijeSteqXpqatS0_L15vc_cp3q8WFz177Ow0mWDjippKQSuhBK8z-uo_9C6uKeTtMsVVxaigR4puVJfyhyTr9D752aSDpqCPKegtBZ1T0McU9CE7bHMws2Gw6Z_JT0j1Jo1-GG2y_T5ZRO1SDIu36Wn15eOOYwzDfX7y75JScgFSqor_AkTRrAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1637421518</pqid></control><display><type>article</type><title>Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Sathish KUMAR, K ; NAVEEN, S</creator><creatorcontrib>Sathish KUMAR, K ; NAVEEN, S</creatorcontrib><description>One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-014-0313-y</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>Algorithms ; Analysis ; catfish particle swarm optimization (catfish PSO) ; Combinatorial analysis ; distribution system reconfiguration (DFR) ; Electric power generation ; Electricity distribution ; Energy ; Energy Systems ; Feeders ; Genetic algorithms ; Mathematical programming ; Minimization ; Networks ; Optimization ; Optimization techniques ; power loss reduction ; PSO ; radial structure ; Reconfiguration ; Research Article ; Studies ; Switches ; Switching theory ; Test systems ; 分配系统 ; 功率损失 ; 动力系统 ; 最小化 ; 网络配置 ; 网络重构 ; 进化算法</subject><ispartof>Frontiers in Energy, 2014-12, Vol.8 (4), p.434-442</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3</citedby><cites>FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71239X/71239X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1637421518?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Sathish KUMAR, K</creatorcontrib><creatorcontrib>NAVEEN, S</creatorcontrib><title>Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><addtitle>Frontiers in Energy</addtitle><description>One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>catfish particle swarm optimization (catfish PSO)</subject><subject>Combinatorial analysis</subject><subject>distribution system reconfiguration (DFR)</subject><subject>Electric power generation</subject><subject>Electricity distribution</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Feeders</subject><subject>Genetic algorithms</subject><subject>Mathematical programming</subject><subject>Minimization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>power loss reduction</subject><subject>PSO</subject><subject>radial structure</subject><subject>Reconfiguration</subject><subject>Research Article</subject><subject>Studies</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Test systems</subject><subject>分配系统</subject><subject>功率损失</subject><subject>动力系统</subject><subject>最小化</subject><subject>网络配置</subject><subject>网络重构</subject><subject>进化算法</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kc1q3TAQRk1pICHNA2Qn2k03bkeSJdnLcukfBBJosxayLdkKtnSjsSk3yz5X36mvUN06LaWLrKQZzhkN-oriksIbCqDeIqUK6hJoVQKnvDw8K84YNKKksqmf_7kroKfFBeIdAFAKAhQ7K-JN_GYTwQMudibJdjE4P6zJLD4GYkJPpohIZh_87B-2rouJGNJ7XJJv19-tzUeyog8D-fnj-84szuNIbr5c54qYaYjJL-P8ojhxZkJ78XieF7cf3n_dfSqvrj9-3r27KruqEUtpRdUaJqtOmdaongtT85YpZTk0lkmbC3Dgqto4QwUH1ijeSteqXpqatS0_L15vc_cp3q8WFz177Ow0mWDjippKQSuhBK8z-uo_9C6uKeTtMsVVxaigR4puVJfyhyTr9D752aSDpqCPKegtBZ1T0McU9CE7bHMws2Gw6Z_JT0j1Jo1-GG2y_T5ZRO1SDIu36Wn15eOOYwzDfX7y75JScgFSqor_AkTRrAI</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Sathish KUMAR, K</creator><creator>NAVEEN, S</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20141201</creationdate><title>Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm</title><author>Sathish KUMAR, K ; NAVEEN, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>catfish particle swarm optimization (catfish PSO)</topic><topic>Combinatorial analysis</topic><topic>distribution system reconfiguration (DFR)</topic><topic>Electric power generation</topic><topic>Electricity distribution</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Feeders</topic><topic>Genetic algorithms</topic><topic>Mathematical programming</topic><topic>Minimization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>power loss reduction</topic><topic>PSO</topic><topic>radial structure</topic><topic>Reconfiguration</topic><topic>Research Article</topic><topic>Studies</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Test systems</topic><topic>分配系统</topic><topic>功率损失</topic><topic>动力系统</topic><topic>最小化</topic><topic>网络配置</topic><topic>网络重构</topic><topic>进化算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathish KUMAR, K</creatorcontrib><creatorcontrib>NAVEEN, S</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathish KUMAR, K</au><au>NAVEEN, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><addtitle>Frontiers in Energy</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>8</volume><issue>4</issue><spage>434</spage><epage>442</epage><pages>434-442</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-014-0313-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-1701
ispartof Frontiers in Energy, 2014-12, Vol.8 (4), p.434-442
issn 2095-1701
2095-1698
language eng
recordid cdi_proquest_miscellaneous_1651457538
source ABI/INFORM Global; Springer Link
subjects Algorithms
Analysis
catfish particle swarm optimization (catfish PSO)
Combinatorial analysis
distribution system reconfiguration (DFR)
Electric power generation
Electricity distribution
Energy
Energy Systems
Feeders
Genetic algorithms
Mathematical programming
Minimization
Networks
Optimization
Optimization techniques
power loss reduction
PSO
radial structure
Reconfiguration
Research Article
Studies
Switches
Switching theory
Test systems
分配系统
功率损失
动力系统
最小化
网络配置
网络重构
进化算法
title Power system reconfiguration and loss minimization for a distribution systems using "Catfish PSO" algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20system%20reconfiguration%20and%20loss%20minimization%20for%20a%20distribution%20systems%20using%20%EF%BC%82Catfish%20PSO%EF%BC%82%20algorithm&rft.jtitle=Frontiers%20in%20Energy&rft.au=Sathish%20KUMAR,%20K&rft.date=2014-12-01&rft.volume=8&rft.issue=4&rft.spage=434&rft.epage=442&rft.pages=434-442&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-014-0313-y&rft_dat=%3Cproquest_cross%3E3530005901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-e54ba264c7aba7d35a83b277e309e26e3b20f0f48afa15302973b6fb7d6a82bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1637421518&rft_id=info:pmid/&rft_cqvip_id=663506674&rfr_iscdi=true