Loading…

Towards fuel cell membranes with improved lifetime: Aquivion® Perfluorosulfonic Acid membranes containing immobilized radical scavengers

A facile synthesis, based on a wet impregnation technique and a thermal treatment, of a novel silica-supported cerium-oxide-based radical scavenger bearing sulfonic acid functionalities is presented. This material is loaded as a filler in ePTFE reinforced membranes (called R79-02S) prepared starting...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2014-12, Vol.272, p.753-758
Main Authors: D'URSO, C, OLDANI, C, BAGLIO, V, MERLO, L, ARICO, A. S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile synthesis, based on a wet impregnation technique and a thermal treatment, of a novel silica-supported cerium-oxide-based radical scavenger bearing sulfonic acid functionalities is presented. This material is loaded as a filler in ePTFE reinforced membranes (called R79-02S) prepared starting from Aquivion(R) Perfluorosulfonic Acid (PFSA) dispersions. The aim is to mitigate the peroxy radicals attack to the polymeric membrane under fuel cell operating conditions. These membranes show much longer (7 times more) life-time in Accelerated Stress Tests (AST) and reduced fluoride release (about one half) in Fenton's tests than the radical scavenger-free membrane without any loss in electrochemical performance. Scavenger-free Aquivion(R) PFSA-based membrane durability is about 200 h in AST whereas the same membrane containing the newly developed radical scavenger exceeds 1400 h. These results confirm the stability of the modified membranes and the excellent activity of the composite scavenger in mitigating the polymer electrolyte degradation.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2014.09.045