Loading…
Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation
BACKGROUND Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity. METHODS Ob...
Saved in:
Published in: | American journal of hypertension 2015-02, Vol.28 (2), p.256-265 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3 |
container_end_page | 265 |
container_issue | 2 |
container_start_page | 256 |
container_title | American journal of hypertension |
container_volume | 28 |
creator | Linz, Dominik Hohl, Mathias Schütze, Jonathan Mahfoud, Felix Speer, Thimoteus Linz, Benedikt Hübschle, Thomas Juretschke, Hans-Paul Dechend, Ralf Geisel, Jürgen Rütten, Hartmut Böhm, Michael |
description | BACKGROUND
Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity.
METHODS
Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks.
RESULTS
In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN.
CONCLUSIONS
In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN. |
doi_str_mv | 10.1093/ajh/hpu123 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1652388303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ajh/hpu123</oup_id><sourcerecordid>1652388303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl42PoBkI4hQJ5fe4k4GdQYHRkZdlzQ9dTK0SU1aoU_ga1vp6NLVOYuP7-f_ETqn5IYSwadyu5lumo4yvocmVIQ0SBiL9tGEpCIKEhLTI3Ts_ZYQEsYxPURHLCKMMxJN0Nezs-8OvNfWYFviJ10Y6PHCbDvXY2kKPJOu0FLhNdS2gEqbd6wNXuXgAb801rTSgO181eN534BrwXj9CXgtW3-LXzfDZyv4Ua_ByAq_9HUj2w20Wg0pBtynbIfsU3RQysrD2e6eoLeH-9fZPFiuHhezu2WgQiraQOQsTzjwqEyLJA0lQJTTMi0LkiilgDGI44TFQtAYEhbyoS4BpYRgEZNAC36CrkZv4-xHB77Nau0VVNXYIqNxxHiacsIH9HpElbPeOyizxulauj6jJPsZPhuGz8bhB_hi5-3yGoo_9HfpAbgcAds1_4m-AWQFjdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652388303</pqid></control><display><type>article</type><title>Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation</title><source>Oxford Journals Online</source><creator>Linz, Dominik ; Hohl, Mathias ; Schütze, Jonathan ; Mahfoud, Felix ; Speer, Thimoteus ; Linz, Benedikt ; Hübschle, Thomas ; Juretschke, Hans-Paul ; Dechend, Ralf ; Geisel, Jürgen ; Rütten, Hartmut ; Böhm, Michael</creator><creatorcontrib>Linz, Dominik ; Hohl, Mathias ; Schütze, Jonathan ; Mahfoud, Felix ; Speer, Thimoteus ; Linz, Benedikt ; Hübschle, Thomas ; Juretschke, Hans-Paul ; Dechend, Ralf ; Geisel, Jürgen ; Rütten, Hartmut ; Böhm, Michael</creatorcontrib><description>BACKGROUND
Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity.
METHODS
Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks.
RESULTS
In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN.
CONCLUSIONS
In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN.</description><identifier>ISSN: 0895-7061</identifier><identifier>EISSN: 1941-7225</identifier><identifier>DOI: 10.1093/ajh/hpu123</identifier><identifier>PMID: 25023205</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Acute Kidney Injury - etiology ; Acute Kidney Injury - metabolism ; Animals ; Blood Pressure ; Creatinine - metabolism ; Disease Progression ; Hypertension - complications ; Hypertension - physiopathology ; Kidney - innervation ; Kidney - physiopathology ; Magnetic Resonance Imaging ; Male ; Myocardium - pathology ; Obesity - complications ; Obesity - physiopathology ; Rats ; Rats, Inbred SHR ; Rats, Sprague-Dawley ; Renal Insufficiency, Chronic - etiology ; Renal Insufficiency, Chronic - metabolism ; Sympathectomy ; Sympathetic Nervous System ; Ventricular Remodeling</subject><ispartof>American journal of hypertension, 2015-02, Vol.28 (2), p.256-265</ispartof><rights>American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014</rights><rights>American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3</citedby><cites>FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25023205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linz, Dominik</creatorcontrib><creatorcontrib>Hohl, Mathias</creatorcontrib><creatorcontrib>Schütze, Jonathan</creatorcontrib><creatorcontrib>Mahfoud, Felix</creatorcontrib><creatorcontrib>Speer, Thimoteus</creatorcontrib><creatorcontrib>Linz, Benedikt</creatorcontrib><creatorcontrib>Hübschle, Thomas</creatorcontrib><creatorcontrib>Juretschke, Hans-Paul</creatorcontrib><creatorcontrib>Dechend, Ralf</creatorcontrib><creatorcontrib>Geisel, Jürgen</creatorcontrib><creatorcontrib>Rütten, Hartmut</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><title>Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation</title><title>American journal of hypertension</title><addtitle>AJHYPE</addtitle><addtitle>Am J Hypertens</addtitle><description>BACKGROUND
Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity.
METHODS
Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks.
RESULTS
In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN.
CONCLUSIONS
In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN.</description><subject>Acute Kidney Injury - etiology</subject><subject>Acute Kidney Injury - metabolism</subject><subject>Animals</subject><subject>Blood Pressure</subject><subject>Creatinine - metabolism</subject><subject>Disease Progression</subject><subject>Hypertension - complications</subject><subject>Hypertension - physiopathology</subject><subject>Kidney - innervation</subject><subject>Kidney - physiopathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Myocardium - pathology</subject><subject>Obesity - complications</subject><subject>Obesity - physiopathology</subject><subject>Rats</subject><subject>Rats, Inbred SHR</subject><subject>Rats, Sprague-Dawley</subject><subject>Renal Insufficiency, Chronic - etiology</subject><subject>Renal Insufficiency, Chronic - metabolism</subject><subject>Sympathectomy</subject><subject>Sympathetic Nervous System</subject><subject>Ventricular Remodeling</subject><issn>0895-7061</issn><issn>1941-7225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl42PoBkI4hQJ5fe4k4GdQYHRkZdlzQ9dTK0SU1aoU_ga1vp6NLVOYuP7-f_ETqn5IYSwadyu5lumo4yvocmVIQ0SBiL9tGEpCIKEhLTI3Ts_ZYQEsYxPURHLCKMMxJN0Nezs-8OvNfWYFviJ10Y6PHCbDvXY2kKPJOu0FLhNdS2gEqbd6wNXuXgAb801rTSgO181eN534BrwXj9CXgtW3-LXzfDZyv4Ua_ByAq_9HUj2w20Wg0pBtynbIfsU3RQysrD2e6eoLeH-9fZPFiuHhezu2WgQiraQOQsTzjwqEyLJA0lQJTTMi0LkiilgDGI44TFQtAYEhbyoS4BpYRgEZNAC36CrkZv4-xHB77Nau0VVNXYIqNxxHiacsIH9HpElbPeOyizxulauj6jJPsZPhuGz8bhB_hi5-3yGoo_9HfpAbgcAds1_4m-AWQFjdc</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Linz, Dominik</creator><creator>Hohl, Mathias</creator><creator>Schütze, Jonathan</creator><creator>Mahfoud, Felix</creator><creator>Speer, Thimoteus</creator><creator>Linz, Benedikt</creator><creator>Hübschle, Thomas</creator><creator>Juretschke, Hans-Paul</creator><creator>Dechend, Ralf</creator><creator>Geisel, Jürgen</creator><creator>Rütten, Hartmut</creator><creator>Böhm, Michael</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150201</creationdate><title>Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation</title><author>Linz, Dominik ; Hohl, Mathias ; Schütze, Jonathan ; Mahfoud, Felix ; Speer, Thimoteus ; Linz, Benedikt ; Hübschle, Thomas ; Juretschke, Hans-Paul ; Dechend, Ralf ; Geisel, Jürgen ; Rütten, Hartmut ; Böhm, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acute Kidney Injury - etiology</topic><topic>Acute Kidney Injury - metabolism</topic><topic>Animals</topic><topic>Blood Pressure</topic><topic>Creatinine - metabolism</topic><topic>Disease Progression</topic><topic>Hypertension - complications</topic><topic>Hypertension - physiopathology</topic><topic>Kidney - innervation</topic><topic>Kidney - physiopathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Myocardium - pathology</topic><topic>Obesity - complications</topic><topic>Obesity - physiopathology</topic><topic>Rats</topic><topic>Rats, Inbred SHR</topic><topic>Rats, Sprague-Dawley</topic><topic>Renal Insufficiency, Chronic - etiology</topic><topic>Renal Insufficiency, Chronic - metabolism</topic><topic>Sympathectomy</topic><topic>Sympathetic Nervous System</topic><topic>Ventricular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linz, Dominik</creatorcontrib><creatorcontrib>Hohl, Mathias</creatorcontrib><creatorcontrib>Schütze, Jonathan</creatorcontrib><creatorcontrib>Mahfoud, Felix</creatorcontrib><creatorcontrib>Speer, Thimoteus</creatorcontrib><creatorcontrib>Linz, Benedikt</creatorcontrib><creatorcontrib>Hübschle, Thomas</creatorcontrib><creatorcontrib>Juretschke, Hans-Paul</creatorcontrib><creatorcontrib>Dechend, Ralf</creatorcontrib><creatorcontrib>Geisel, Jürgen</creatorcontrib><creatorcontrib>Rütten, Hartmut</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of hypertension</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linz, Dominik</au><au>Hohl, Mathias</au><au>Schütze, Jonathan</au><au>Mahfoud, Felix</au><au>Speer, Thimoteus</au><au>Linz, Benedikt</au><au>Hübschle, Thomas</au><au>Juretschke, Hans-Paul</au><au>Dechend, Ralf</au><au>Geisel, Jürgen</au><au>Rütten, Hartmut</au><au>Böhm, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation</atitle><jtitle>American journal of hypertension</jtitle><stitle>AJHYPE</stitle><addtitle>Am J Hypertens</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>28</volume><issue>2</issue><spage>256</spage><epage>265</epage><pages>256-265</pages><issn>0895-7061</issn><eissn>1941-7225</eissn><abstract>BACKGROUND
Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity.
METHODS
Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks.
RESULTS
In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN.
CONCLUSIONS
In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>25023205</pmid><doi>10.1093/ajh/hpu123</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-7061 |
ispartof | American journal of hypertension, 2015-02, Vol.28 (2), p.256-265 |
issn | 0895-7061 1941-7225 |
language | eng |
recordid | cdi_proquest_miscellaneous_1652388303 |
source | Oxford Journals Online |
subjects | Acute Kidney Injury - etiology Acute Kidney Injury - metabolism Animals Blood Pressure Creatinine - metabolism Disease Progression Hypertension - complications Hypertension - physiopathology Kidney - innervation Kidney - physiopathology Magnetic Resonance Imaging Male Myocardium - pathology Obesity - complications Obesity - physiopathology Rats Rats, Inbred SHR Rats, Sprague-Dawley Renal Insufficiency, Chronic - etiology Renal Insufficiency, Chronic - metabolism Sympathectomy Sympathetic Nervous System Ventricular Remodeling |
title | Progression of Kidney Injury and Cardiac Remodeling in Obese Spontaneously Hypertensive Rats: The Role of Renal Sympathetic Innervation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progression%20of%20Kidney%20Injury%20and%20Cardiac%20Remodeling%20in%20Obese%20Spontaneously%20Hypertensive%20Rats:%20The%20Role%20of%20Renal%20Sympathetic%20Innervation&rft.jtitle=American%20journal%20of%20hypertension&rft.au=Linz,%20Dominik&rft.date=2015-02-01&rft.volume=28&rft.issue=2&rft.spage=256&rft.epage=265&rft.pages=256-265&rft.issn=0895-7061&rft.eissn=1941-7225&rft_id=info:doi/10.1093/ajh/hpu123&rft_dat=%3Cproquest_cross%3E1652388303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-9b2b73e35f8d784aee5b1f8fd07ccce22e667269916e72436610ecc99252ae1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652388303&rft_id=info:pmid/25023205&rft_oup_id=10.1093/ajh/hpu123&rfr_iscdi=true |