Loading…
P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer
A twice wafer-transfer technique can be used to fabricate high-brightness p-side-up thin-film AlGaInP-based light-emitting diodes (LEDs) with an indium-tin oxide (ITO) transparent conductive layer directly deposited on a GaP window layer, without using postannealing. The ITO layer can be used to imp...
Saved in:
Published in: | Optics express 2014-12, Vol.22 Suppl 7 (S7), p.A1862-A1867 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A twice wafer-transfer technique can be used to fabricate high-brightness p-side-up thin-film AlGaInP-based light-emitting diodes (LEDs) with an indium-tin oxide (ITO) transparent conductive layer directly deposited on a GaP window layer, without using postannealing. The ITO layer can be used to improve light extraction, which enhances light output power. The p-side-up thin-film AlGaInP LED with an ITO layer exhibited excellent performance stability (e.g., emission wavelength and output power) as the injection current increased. This stability can be attributed to the following factors: 1) Refractive index matching, performed by introducing ITO between the epoxy and the GaP window layer enhances light extraction; and 2) The ITO layer is used as the current spreading layer to reduce the thermal accumulation in the epilayers. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.22.0A1862 |